博碩士論文 101522027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.128.205.62
姓名 廖政權(Jheng-cyuan Liao)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 色彩學習的交通標誌偵測與辨識
(Traffic Sign Detection and Recognition with Color Learning)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目的是以電腦視覺技術完成一個完整的交通標誌偵測與辨識系統,以協助駕駛人正確辨識出交通標誌。可以有效的減少駕駛人注意力的負擔,以達到降低交通事故的目的。
顏色是偵測交通標誌的主要依據,不同一般直接定義顏色範圍的方式,我們以實際拍攝交通標誌樣本學習標誌色彩,以三維凸包演算法 (3D convex hull algorithm) 填補色彩空間中樣本擷取不足的色彩空缺,並以八分樹 (Octree) 資料結構紀錄標誌的色彩範圍。
整個標誌偵測與辨識分成以下五個步驟。首先,透過學習到的色彩範圍擷取標誌色彩之像素,並將該像素連結成獨立區塊。接著,標誌區塊根據最小矩形框的長寬比、面積大小等幾何條件作初步篩選。第三,通過篩選的標誌候選區塊,將正規到固定大小,再與事先定義好的圓形、半圓形、三角形、及矩形做樣板比對,判斷屬於那一類標誌。第四,根據不同顏色與形狀的標誌,我們對其符號所在區域使用群間最大差異法 (Otsu′s method) 進行二值化,再把標誌符號正規到固定的大小。最後,再將符號二值化影像使用支援向量機 (support vector machine, SVM) 進行標誌的辨識。
我們在不同日間環境下拍攝諸多實驗影片;並針對含有紅色及藍色標誌的3591張影像,利用我們所提的方法擷取色彩,其擷取的準確度為90.25%。在擷取到的1574個標誌中,交通標誌分類平均正確率為94.26%。經過前兩階段處理後,本系統在1488個標誌中辨識出18種標誌,辨識正確率平均達96.63%。
摘要(英) Traffic signs provide drivers with important information and help them to drive more safely and more easily by guiding and warning them and thus regulating their actions. Generally, drivers pay much visual attention to gaining the traffic information. The drivers would be more eased if there is a traffic sign detection and recognition system. In this thesis, we propose a traffic sign detection and recognition system to increase road traffic safety by helping drivers notice the traffic situation on the roads.
There are three stages in the proposed system: i. colored sign detection, ii. shape of sign classification, and iii. traffic sign recognition. The detection task is the most difficult due to the variation of colors in different weather conditions. Here we propose a color learning method to extract the proper pixels to detect traffic signs. The color distributions of traffic sign is analyzed in the YCbCr color space. The color distribution is built by a 3D convex hull method and described by an Octree data structure.
According to the learned color distribution, candidates of sign are extracted from the image. Then regions of candidates of sign are verified by geometric conditions: size, aspect ratio, and ratio of number of extracted red or blue pixels. We classify the red signs into three classes: circle, semicircle, and triangle by using template matching. Correspondingly, the blue signs are classified into two classes: circle and rectangle.
In the sign recognition, the symbols of detected sign are extracted by Otsu’s method and some image processing. Support vector machine (SVM) is employed to recognize the extracted symbols of sign.
The proposed systems are evaluated in variant environments. The accuracy of traffic sign with border being red or blue color detection is 90.25%. The average classification rate of traffic sign shapes is 94.26%. The average recognition rate of symbols in speed limit, prohibition, warning, and obligation signs is 96.63%.
關鍵字(中) ★ 先進駕駛輔助系統
★ 交通標誌偵測
★ 交通標誌辨識
★ 三維凸包
★ 八分樹
★ 樣板比對
★ 支援向量機
關鍵字(英) ★ Advanced driver assistance systems
★ Traffic sign detection
★ Traffic sign recognition
★ 3D convex hull
★ Octree
★ Template matching
★ Support vector machine
論文目次 摘要 ii
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xiv
第一章 緒論 1
1.1 研究動機 1
1.2 系統架構 2
1.3 論文架構 5
第二章 相關研究 7
2.1 交通標誌偵測 7
2.2 交通標誌形狀分類 11
2.3 交通標誌辨識 15
第三章 交通標誌偵測 18
3.1 YCbCr色彩空間 18
3.2 三維凸包填補色彩空間 21
3.3 交通標誌偵測 23
3.3.1 八分樹定義色彩範圍 24
3.3.2 標誌顏色的判斷 27
第四章 交通標誌辨識 30
4.1 候選區塊篩選 30
4.2 交通標誌形狀分類 34
4.3 交通標誌符號擷取 40
4.3.1 交通標誌正規化 40
4.3.2 紅色標誌符號擷取 41
4.3.3 藍色標誌符號擷取 46
4.4 交通標誌辨識 47
4.4.1 支援向量機簡介 47
4.4.2 支援向量機訓練 50
第五章 實驗 54
5.1 實驗環境 54
5.2 色彩擷取方法比較 55
5.3 交通標誌分類 62
5.4 交通標誌辨識 68
第六章 結論及未來展望 74
參考文獻 75
參考文獻 [1] Belaroussi, R. and J. P. Tarel, "Angle vertex and bisector geometric model for triangular road sign detection," in Proc. Workshop on Applications of Computer Vision, Snowbird, UT, Dec.7-8, 2009, pp.1-7.
[2] Boi, F. and L. Gagliardini, "A support vector machines network for traffic sign recognition," in Proc. Int. Joint Conf. on Neural Networks, San Jose, CA, Jul.31-Aug.5, 2011, pp.2210-2216.
[3] Broggi, A., P. Cerri, P. Medici, P. P. Porta, and G. Ghisio, "Real time road signs recognition," in Proc. IEEE Conf. Intelligent Vehicles Symp., Istanbul, Turkey, Jun.13-15, 2007, pp.981-986.
[4] Cheng, S.-C., Detection of Unstructured Road Boundary and Road Sign Recognition, Master Thesis, Elect. Eng. Dept., National Chung Cheng University, Chiayi, Taiwan, 2003.
[5] De La Escalera, A., L. E. Moreno, M. A. Salichs, and J. M. Armingol, "Road traffic sign detection and classification," IEEE Trans. on Industrial Electronics, vol.44, no.6, pp.848-859, 1997.
[6] De La Escalera, A., J. M. Armingol, J. M. Pastor, and F. J. Rodríguez, "Visual sign information extraction and identification by deformable models for intelligent vehicles," IEEE Trans. on Intelligent Transportation Systems, vol.5, no.2, pp.57-68, 2004.
[7] Fang, C.-Y., S.-W. Chen, and C.-S. Fuh, "Road-sign detection and tracking," IEEE Trans. on Vehicular Technology, vol.52, no.5, pp.1329-1341, 2003.
[8] Gao, X. W., L. Podladchikova, D. Shaposhnikov, K. Hong, and N. Shevtsova, "Recognition of traffic signs based on their colour and shape features extracted using human vision models," Journal of Visual Communication and Image Representation, vol.17, no.4, pp.675-685, 2006.
[9] Gao, X. W., K. Hong, P. Passmore, L. Podladchikova, and D. Shaposhnikov, "Colour vision model-based approach for segmentation of traffic signs," EURASIP Journal on image and video processing, vol.2008, pp.1-7, 2008.
[10] Greenhalgh, J. and M. Mirmehdi, "Real-time detection and recognition of road traffic signs," IEEE Trans. on Intelligent Transportation Systems, vol.13, no.4, pp.1498-1506, 2012.
[11] Han, L., L. Ding, and X. Jing, "Real-time recognition of road traffic sign in motion image based on genetic algorithm," in Proc. Int. Conf. on Machine Learning and Cybernetics, Beijing, China, Nov.4-5, 2002, vol.1, pp.83-86.
[12] Hechri, A. and A. Mtibaa, "Automatic detection and recognition of road sign for driver assistance system," in Proc. The 16th IEEE Conf. on Mediterranean Electrotechnical, Hammamet, Tunisia, Mar.25-28, 2012, pp.888-891.
[13] Hossain, M. S., M. M. Hasan, M. A. Ali, M. H. Kabir, and A. B. M. S. Ali, "Automatic detection and recognition of traffic signs," in Proc. IEEE Conf. on Robotics Automation and Mechatronics, Busan, South Korea, Jun.28-30, 2010, pp.286-291.
[14] Hsu, S.-H. and C.-L. Huang, "Road sign detection and recognition using matching pursuit method," Image and Vision Computing, vol.19, no.3, pp.119-129, 2001.
[15] Huang, W.-C. and C.-H. Wu, "Adaptive color image processing and recognition for varying backgrounds and illumination conditions," IEEE Trans. on Industrial Electronics, vol.45, no.2, pp.351-357, 1998.
[16] Jack, K., eds., Video Demystified: A Handbook for The Digital Engineer, Newnes, Oxford, UK, 2007.
[17] Lafuente-Arroyo, S., S. Salcedo-Sanz, S. Maldonado-Bascón, J. A. Portilla-Figueras, and R. J. López-Sastre, "A decision support system for the automatic management of keep-clear signs based on support vector machines and geographic information systems," Expert Systems with Applications, vol.37, no.1, pp.767-773, 2010.
[18] Lee, J.-H., L. and K.-H. Jo, "Traffic sign recognition by division of characters and symbols regions," in Proc. The 7th Korea-Russia Int. Symp. on Science and Technology, Ulsan, South Korea, Jul.6, 2003, vol.2, pp.324-328.
[19] Maldonado-Bascón, S., S. Lafuente-Arroyo, P. Gil-Jimenez, H. Gomez-Moreno, and F. López-Ferreras, "Road-sign detection and recognition based on support vector machines," IEEE Trans. on Intelligent Transportation Systems, vol.8, no.2, pp.264-278, 2007.
[20] Malik, R., J. Khurshid, and S. N. Ahmad, "Road sign detection and recognition using colour segmentation, shape analysis and template matching," in Proc. Int. Conf. on Machine Learning and Cybernetics, Hong Kong, Aug.19-22, 2007, pp.3556-3560.
[21] Miura, J., T. Kanda, and Y. Shirai, "An active vision system for real-time traffic sign recognition," in Proc. IEEE Conf. on Intelligent Transportation Systems, Dearborn, MI, Oct.1-3, 2000, pp.52-57.
[22] O′Rourke, J., eds., Computational Geometry in C, Cambridge University Press, Cambridge, UK, 1998.
[23] Pacheco, L., J. Batlle, and X. Cufi, "A new approach to real time traffic sign recognition based on colour information," in Proc. Intelligent Vehicles′ 94 Symp., Paris, France, Oct.24-26, 1994, pp.339-344.
[24] Pérez, E. and B. Javidi, "Nonlinear distortion-tolerant filters for detection of road signs in background noise," IEEE Trans. on Vehicular Technology, vol.51, no.3, pp.567-576, 2002.
[25] Ren, F. X., J. Huang, J. Ruyi, and R. Klette, "General traffic sign recognition by feature matching," in Proc. The 24th Int. Conf. on Image and Vision Computing, Wellington, New Zealand, Nov.23-25, 2009, pp.409-414.
[26] Shadeed, W. G., D. I. Abu-Al-Nadi, and M. J. Mismar, "Road traffic sign detection in color images," in Proc. The 10th IEEE Int. Conf. on Electronics, Circuits and Systems, Sharjah, United Arab Emirates, Dec.14-17, 2003, vol.2, pp.890-893.
[27] Shaposhnikov, D. G., N. Lubov, A. V. G. Podladchikova, N. A. Shevtsova, K. Hong, and X. Gao, "Road sign recognition by single positioning of space-variant sensor window," Int. Journal of Radiation Oncology, Biology, Physics, vol.393, no.423, pp.57-95, 2002.
[28] Timofte, R., K. Zimmermann, and G. Luc Van, "Multi-view traffic sign detection, recognition, and 3D localisation," in Proc. Workshop on Applications of Computer Vision, Snowbird, Utah, Dec.7-8, 2009, pp.1-8.
[29] Vitabile, S., A. Gentile, and F. Sorbello, "A neural network based automatic road signs recognizer," in Proc. Int. Joint Conf. on Neural Networks, Honolulu, HI, May 12-17, 2002, pp.2315-2320.
[30] Wanitchai, P. and S. Phiphobmongkol, "Traffic warning signs detection and recognition based on fuzzy logic and chain code analysis," in Proc. The 2nd Int. Symp. on Intelligent Information Technology Application, Shanghai, China, Dec.20-22, 2008, pp.508-512.
[31] Xu, Q., J. Su, and T. Liu, "A detection and recognition method for prohibition traffic signs," in Proc. Int. Conf. on Image Analysis and Signal Processing, Zhejiang, China, Apr.9-11, 2010, pp.583-586.
指導教授 曾定章(Din-chang Tseng) 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明