參考文獻 |
CHAPTER1
[1.1] D. Malacara, ed., Optical Shop Testing, Wiley, New York, (1992).
[1.2] A. Ahmad, ed. Optomechanical Engineering Handbook, ch6-ch8, Boca Raton, CRC Press, (1999).
[1.3] D. Malacara and Z. Malacara, Handbook of optical design ,ch7, Marcel Dekker, Inc., NY, New York,(2004).
[1.4] R. S. Chang, J.Y. Sheu, and C. H. Lin, “Analysis of seidel aberration by use of the discrete wavelet transform”, Applied Optics,41,13, 2408-2413, (2002).
[1.5] R. S. Chang, J.Y. Sheu, and C. H. Lin, “Analysis of wave-aberration by use of the wavelet transform”, Chinese Journal of Physics, 40,1,20-30, ( 2002).
[1.6] C. H. Lin, C. Y. Chen, J. Y. Sheu, P. L. Fan, and R. S. Chang, ” Focal length measurement by the analysis of moiré fringes using the wavelet Transformation,” Journal of the Chinese Institute of Engineers, 28,1,33-38, (2005)
[1.7] 高嘉宏, 張榮森, 林慶煌 “基於小波轉換的液晶投影顯示器R-G-B PANEL自動化校準之研究”,OPT 2004, 台灣光電科技研討會, (2004).
[1.8] X. Liua, and R. Ehrichb, “Analysis of moire patterns in non-uniformly sampled halftones,” Image and Vision Computing, 18, 843–848, (2000).
[1.9] K. Jack, and V. Tsatsulin, Dictionary of video and television Technology, Elsevier Science, MA. (2002).
[1.10] J. Wang, V.M. Murukeshan and A. Asundi, “ Derivative using low frequency carrier fringes,” Measurement, 34, 111–119, (2003).
[1.11] K. J. Gasvik, Optical Metrology, , 3rd ed, John Wiley & Sons, Ltd. MA (2002).
[1.12] D. M. Meadow, W. Johnson, and T. B. Allen, “Generation of surface contours by moire pattern,” Applied Optics, 9, 942-927,(1970).
[1.13] H. Takasaki, “ Moire topology,” Applied Optics, 9, 1457-1472, (1970).
[1.14] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. Prentice Hall, Inc. New Jersey, (2002).
[1.15] M. S. Nixon and A. S. Aguado, Feature Extraction and Image Processing, Butterworth-Heinemann Linacre House, Jordan Hill, MA ,(2002).
[1.16] A. Bovik, Handbook of Iimage and Video processing ,Academic Press, San Diego, CA, (2000).
[1.17] K. R. Rao and P. C. Yip, The Transform and Data Compression Handbook, Boca Raton, CRC Press, (2001).
[1.18] Isaac N. Bankman , Handbook of medical imaging processing and analysis , Academic Press, San Diego, CA, (2000).
[1.19] C. K. Chui, An Introduction to Wavelets, Academic Press, London, (1992).
[1.20] I. Daubechies,” Where do wavelets come from? A personal point of view,” Proc. IEEE, 84(4),510–513, (1996).
[1.21] Y. Meyer, Wavelets, Algorithms and Applications, SIAM, Philadelphia, PA, (1993).
[1.22] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, (1992).
[1.23] C.K. Chui, Wavelets: A Mathematical Tool for Signal Analysis, SIAM, Philadelphia, PA, (1997).
[1.24] I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Comm. Pure Appl. Math., 41, pp. 909–996. (1988).
[1.25] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, New York, NY, (1998).
[1.26] R. S. Chang, J.Y. Sheu, and C. H. Lin, H. C. Liu, “Analysis of CCD moiré pattern for micro-range measurements using the wavelet transform,” Optics & Laser Technology, 35, 43-47, (2003).
[1.27] H. T. Lau, Numerical library in C for scientists and engineers, Boca Raton, CRC Press, (1995).
[1.28] E. H. Stupp, and M. S. Brennesholtz, Projection Displays, John Wiley & Sons Ltd., West Sussex, England, (1999).
[1.29] Y. Kwak,and L. MacDonald, “ Characterisation of a desktop LCD projector,” Displays , 21, 179-194, (2000).
CHAPTER 2
[2.1] I. Amidror, The Theory of Moiré, Kluwer Academic, New York, (2000).
[2.2] H. Takasaki, “Moire´ topography”, Applied optics , 9, 1467–1472, (1970).
[2.3] K. J. Gasvik, Optical Metrology, 3ed, Ch7, Wiley, New York, (2002).
[2.4] S. Wittekoek, and W. J. Vander “Phase gratings as wafer stepper alignment marks for all process layers”, SPIE, Optical Microlithography IV, 538, 24-31, (1985).
[2.5]. D. Post, B. Han, and P. Ifju, High-Sensitivity Moiré, Springer-Verlag, New York, (1994).
[2.6] Y. L. Lay, R. S. Chang, P.W. Chen, and D.C. Chern, “CCD grating-generated moire pattern for close-range measurement”, Photonics and Optelectronics, 3, 131-138, (1995).
[2.7]. R.S. Chang, “Low cost moire pattern for the analysis of image stability”, proc. SPIE, 462, 82-86, (1984).
[2.8]. R. S. Chang and C.W. Lin, “Test the high building vibration and the deformation during earthquake by high speed camera wirh moire fringe technique,” proc. SPIE, 497, 36-39, (1984).
[2.9] L. Rayleigh, “On the manufacture and theory of diffraction gratings”, Phil. Mag., 47, 81-93, (1874).
[2.10] O. Kafri, I. Glatt, The Physics of Moire´ Metrology, Ch1, Wiley, New York, (1990).
[2.11] P. W. Robert, “A method for the summation of irregular movements,” J. Sci. Instrum., 27, 105-106, (1950).
[2.12] J. Stevenson, J. R. Jordan, “Metrological gratings and moiré fringe detection methods for displacement transducers,” IEE. Proceedings, 36, A, 5, 243-253, Sep. (1989).
[2.13] J. Guild, The interference systems of crossed diffraction gratings: theory of moiré fringes, Clarendon Press, Oxford, (1956).
[2.14] D. Malacara, ed., Optical Shop Testing, Ch16, 2nd ed.,John Wiley & Sons, Inc., New York, (1992).
CHAPTER 3
[3.1] F. Liang and B. Jeyasurya, “Transmission line distance protection using wavelet transform algorithm,” IEEE Transc. on Power Delivery, 19, 2, April, (2004).
[3.2] V. L. Shapiro, "Embedded image coding using zero trees of wavelet coefficients," IEEE Transactions on Acoustics, Speech and Signal Processing , 41, 12, 3445-3462, (1993).
[3.3] L. Khadra, M. Matalgah, B. El-Asir and S. Mawagdeh, "The wavelet transform and its applications to phonocardiogram signal analysis," Medical Informatics, 16, 3, 271-277, (1991).
[3.4] R.A. DeVore, B. Jawerth and B.J. Lucier, "Image compression through wavelet transform coding," IEEE Trans. Information Theory, 38, 2, 719-746, (1992).
[3.5] A. Aldroubi and M. Unser, Wavelets in Medicine and Biology, CRC Press, Boca Raton, FL, (1996).
[3.6] N. Soveiko and M. Nakhla, “Efficient capacitance extraction computations in wavelet domain,” IEEE Trans. Circ. Syst. I, 47(5), 684–701, (2000).
[3.7] R.K.Martinet, J.Morlet, and A.Grossmann, “Analysis of sound patterns through wavelet transforms,” Int. J. Patt. Rec Art.Intell.1, 273-302 (1987).
[3.8] K., Gurley, and A. Kareem, ‘‘Application of wavelet transforms in earthquake, wind and ocean engineering,’’ Eng. Struct., 21, 149–167, (1999).
[3.9] A. K. Leung, F. Chau, and J. Gao, “ A review on application of wavelet transform techniques in chemical analysis: 1989-1997,” Chemometrics and Intelligent laboratory Systems, 43, 165-184, (1998).
[3.10] M.Unser, “Texture classification and segmentation Using Wavelet Frames,” IEEE Transactions on Image Processing, 4, 11, (1995).
[3.11] A. Haar, “Zur Theorie der orthogonalen Funktionensysteme,” Math. Annal., 69, 331–371, (1910).
[3.12] R. E. A. C. Paley and J. E. Littlewood, “Theorems on Fourier series and power series,” (I). J.L.M.S., 6, 230–233, (1931); (II). J.L.M.S., 42, 52–89, (1936)
[3.13] C. E. Shannon, “Mathematical theory of communication,” Bell Syst. Tech. J., 27, 379–423, 623–656, (1948).
[3.14] A. P. Calderon, “An atomic decomposition of distributions in parabolic Hp spaces,” Adv. Math., 25, 216–255, (1977).
[3.15] J. Stromberg, “A modified Franklin system and higher-order systems of Rn as unconditional bases for Hardy spaces,” Conf. Harmonic Analysis in Honor of A. Zygmund, W. Beckner et al., ed., 475–493 Wadsworth Math Series, Wadworth, Belmont, CA, (1981).
[3.16] A. Grossman and J. Morlet, “Decomposition of Hardy functions into square integrable wavelets of constant shape,” SIAM J. Math. Anal., 15, 723–736, (1984).
[3.17] Y. Meyer, Principle d’incertitude, basis Hilbertiennes et algebras d’operateurs, Bourbaki Seminar, no. 662, (1985–1986).
[3.18] S. Mallat, “Multiresolution approximation and wavelet orthogonal bases of L2,” Trans. AMS, 315, 69–87, (1989).
[3.19] I. Daubechies, “Orthogonal bases of compactly supported wavelets,” Comm. Pure Appl. Math., 41, 909–996, (1988).
[3.20] C. K. Chui., Wavelets: a mathematical tool for signal analysis, SIAM Monographs on Mathematical Modeling and Computation.Philadelphia, PA: SIAM, (1997).
[3.21] A. D. Poularikas, The transforms and applications handbook, 2ed ed. IEEE Press, (2000).
[3.22] P. J. Burt and E. H Adelson, “The Lalacian pyramid as a compact image code,” IEEE Trans Commun. COM-31, 532-540 (1983).
[3.23] P. J. Burt, “The pyramid as a structure for efficient computation,” in Multiresolution Image Processing and Analysis, A. Rosenfeld, ed., Springer-Verlag, Berlin (1984).
[3.24] I. Daubechies, A. Grossmann, and Y. Meyer, “Painless nonorthogonal expansions,” J. Math. Phys. 27, 1271-1283 (1986).
[3.25] S. Mallat, A theory for multiresolution signal decomposition, dissertation,” Univ. of Pennsylvania, Depts. Of Elect. Eng. and Comput. Sci. (1988).
[3.26] S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell. 11, 674-693 (1989).
[3.27] Y. Meyer, R. D. Ryan, “Wavelets: Algorithms and Applications,” Transl., SIAM, Philadelphia, (1993).
[3.28] I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Comm. Pure and Appl. Math. 41, 909-996 (1988).
[3.29] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
[3.30] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, New York, (1998).
CHAPTER 4
[4.1] G. T.Reid, “ Moire fringes in Metrology,” Optics and Lasers in Engineering, Vol. 5, pp. 63, (1981).
[4.2] I. Glatt, and O. Kafri, “Determination of the focal length of non paraxial lenses by moiré deflectometry,” Applied Optics, 26, pp.2507-2508, (1987).
[4.3] E. Keren, K. M. Kreske, and O. Kafri, “Universal method for determining the focal length of optical systems by moiré deflectometry,” Applied Optics, 27, 1383-1385, (1988).
[4.4] Y. Nakano, and K. Murata, “Talbot interferometry for measuring the focal length of a lens,” Applied Optics, 24, 3162-3166, (1985).
[4.5] L. M.Bernardo, and O. D.Soares, “Evaluation of the focal distance of a lens by Talbot interferometry,” Applied Optics, 27, 296-301, (1988).
[4.6] S. de Nicoal, P. Ferraro, A. Finizio, and G. Pierattini, , “Reflective grating interferometer for measuring the focal length of a lens by digital moiré effect,” Optical Communication, Vol. 132, pp. 432-6, (1996).
[4.7] M. de Angelis, S. de Nicoal, P. Ferraro, A. Finizio, and G. Pierattini, “Analysis of moiré fringes for measuring the focal length of lenses,” Optics and Lasers in Engineering, 30, 279-286, (1998).
[4.8] G. Oster, “Optical Art,” Applied Optics, Vol. 4, pp. 1359, (1965).
[4.9] S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 674-693, (1989).
[4.10] I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Transactions on Information Theory, 36, 961-1005, (1990).
[4.11] R. Kingslake, Applied Optics and Optical Engineering, Vol. 1, Academic Press, New York, 208-226, (1965).
[4.12] MATLAB, 1997, MATLAB TOOL BOX, The Math Works, Inc., Natick, Mass, USA.
[4.13] J. B. Weaver, Y. Xu, , D. M. Healy, and L. D. Cromwell, “Filtering noise from images with wavelet transforms,” Magnetic Resonance in Medicine, 21, 288-295,(1991).
CHAPTER 5
[5.1] O. Kafri and I. Glat, “Moire´ deflectometry: a ray deflection approach to optical testing,” Opt. Eng. 24, 944–960,(1985).
[5.2] K. Jamshidi-Ghaleh, N. Mansour, “Nonlinear refraction measurements of materials using the moire deflectometry,” Optics Communications ,234, 419–425, (2004).
[5.3] E. Kern, E. Bar-Ziv, I, Glatt, O. Kafri, “Measurement of temperature distribution of fames by moire defectometry,” Applied optics, 20, 4263-6, (1981).
[5.4] I, Glatt, A, Livant, O. Kafri, “Direct determination of modulation transfer function by moire deflectometry,” J. Opt. Soc. Am., A, 2 ,2 , 107-110,(1985).
[5.5] M. Servin, R. Rodriguez-Vera, M. Carpio, and A. Morales, “Automatic fringe detection algorithm used for moire´ deflectometry,” Applied optics 29, 3266–3270 (1990).
[5.6] J. Y. Wang and D. E. Silva, “Wave-front interpretation with Zernike polynomials,” Applied optics 19, 1510–1518 (1980).
[5.7] D. Malacara, J. M. Carpio-Valade´z, and J. J. Sa´nchez- Mondrago´n, “Wave-front fitting with discrete orthogonal polynomials in a unit radius circle,” Opt. Eng. 29, 672–675 (1990).
[5.8] D.L. Fried, “Least-squares fitting a wave front distortion estimate to an array of phase difference measurements,“ J. Opt. Soc. Am., 67, 370-375, (1977).
[5.9] R.H. Hudgin, “Wave-front reconstruction for compensated imaging,” J. Opt. Soc. Am., 67, 375-378, (1977).
[5.10] R. Legarda, M. Rivera, R. Rodriguez, G. Trujillo, “Robust wave-front estimation from multiple directional derivatives,” Optics Letter 25 ,1089-1091, (2000).
[5.11] M. Unser, “An improved least squares Laplacian pyramid for image compression,” Signal Process. 27, 187–203 (1992).
[5.12] M. Antonin, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using vector quantization in the wavelet transform domain,” in Proceedings of the International Conference on Acoustical Speech and Signal Processing IEEE, New York, (1990), pp. 2297–2300.
[5.13] D. Philippe, M. Benoit, and T. M. Dirk, “Signal adapted multiresolution transform for image coding,” IEEE Trans. Inf. Theory 38, 897–904 (1992).
[5.14] R. A. Devore, B. Jawerth, and P. J. Lucier, “Image compression through wavelet transform coding,” IEEE Trans. Inf. Theory 38, 719–746 (1992).
[5.15] G. Strang, “Wavelets and dilation equations: a brief introduction,” SIAM Soc. Ind. Appl. Math. Rev. 31, 614–627 (1989).
[5.16] D. Malacara, Optical Shop Testing ,Wiley, New York, Chap. 13, p. 465, (1992)
[5.17] .O. Kafri and Y. Glatt, The Physics of Moire Metrology, Wiley, New York, (1989).
[5.18] M. Born and E. Wolf, Principles of Optics, 7th ed. Pergamon, New York, (1999).
[5.19] L. Erdmann and R. Kowarschik, “Testing of refractive silicon microlenses by use of a lateral shearing interferometer in transmission,” Applied optics, 37, 4 , (1998).
[5.20] J.W.Goodman, Introduction to the fourier optics, McGraw-Hill, New York, (1968).
[5.21] R. Kingslake, "The interferometer patterns due to the primary aberrations," Trans. Opt. Soc. 27, 94-99 (1925-1926).
[5.22] S. Mallat, “A theory for multiresolution signal decomposition: The wavelet wavelet representation,” IEEE Trans. Pattern Anal.Mach. Intell. 11, 674–693 1989 .
[5.23] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding Prentice-Hall, Englewood Cliffs, N.J., (1995).
[5.24] M. Vetterli, “Multi-dimensional subband coding: some theory and algorithms,” Signal Process. 6, 97–112 (1984).
[5.25] Wavelet Toolbox For Use with MATLAB The Math Works, Natick, Mass.,
Chapter 6
[6.1] E. H. Stupp, and M. S. Brennesholtz, Projection Displays, John Wiley & Sons Ltd., Baffins Lane, Chichester, West Sussex, England, (1999).
[6.2] O. Kafri, I.Glatt, The Physics of Moiré Metrology, John Wiley & Sons Inc., 605 Third Avenue, New York, NY, USA, (1999).
[6.3] Mallat, A Wavelet Tour of Signal Processing, 2nd Ed., Academic Press, 14-28 Oval Road, London, UK, (1999).
[6.4] R. C. Gonzalez, and R. E. Woods, Digital Image Processing, 2nd Ed., Prentice-Hall Inc., Upper Saddle River, New Jersey, 349-409 (2002). |