參考文獻 |
[1] 許協隆、莊德興,「雙軸彎矩矩形鋼管混凝土柱設計與應用(中鼎工程股份有限公司計畫)」,財團法人中技社,台北 (2013)。
[2] ACI-318, “Building Code Requirements for structural concrete and commentary,” Detroit (MI), American Concrete Institute (2011).
[3] AISC, “Specification for Structural Steel Buildings,” American Institute of Steel Construction. Chicago, IL. (2010).
[4] Bridge, R. Q., “Concrete filled steel tubular columns,” School of Civil Engineering, the university of Sydney, Australia, Research Report No. R283 (1976).
[5] Bridge, R. Q., and O’Shea, M. D., “Behavior of thin-walled steel box sections with or without internal restraint,” Journal of Constructional Steel Research, Vol. 47, pp. 73-91 (1998).
[6] Chen, S. F., Teng, J. G., and Chan, S.L., “Design of biaxially loaded short composite columns of arbitrary section,” Journal of Structural Engineering, Vol. 127, pp. 678-685 (1997).
[7] Choi, Y. H., Foutch, D. A., and LaFave, J. M., “New approach to AISC PM interaction curve for square concrete filled tube (CFT) beam-columns,” Engineering Structures, Vol. 28, pp. 1586-1598 (2006).
[8] Choi, Y. H., Kim, K. S., and Choi, S. M., “Simplified PM interaction curve for square steel tube filled with high-strength concrete,” Thin-walled Structures, Vol. 46, pp.506-515 (2007).
[9] Chung, J., Tsuda, K., and Matsui, C., “High-strength concrete filled square tube columns subjected to axial loading,” The Seventh East Asia-Pacific Conference on Structural Engineering & Construction, Kochi, Japan, Vol. 2, pp.955-960 (1999).
[10] EI-Tawil, S., and Sanz-Picon, C. F., Deierlein, G. G., “Evaluation of ACI 318 and AISC (LRFD) Strength Provisions for Composite Beam-Columns,” Journal of Constructional Steel Research, Vol. 34, pp. 103-123 (1995).
[11] El-Tawil, S., and Deierlein, G. G., “Strength and ductility of concrete encased composite columns,” Journal of Structural Engineering, Vol. 125, pp. 1009-1019 (1999).
[12] Evirgen, B., Tuncan, A., and Taskin, K., “Structural behavior of concrete filled steel tubular sections (CFT/CFSTs) under axial compression,” Thin-Walled Structures, Vol. 80, pp. 46-56 (2014).
[13] Ellobody, E., and Young, B., “Nonlinear analysis of concrete-filled steel SHS and RHS columns,” Thin-Walled Structures, Vol. 44, pp. 919-930 (2006).
[14] Furlong, R.W., “Strength of steel-encased concrete beam–columns,” Journal of Structural Division, pp. 113-124 (1967).
[15] Ge, H. B., and Usami, T., “Strength of concrete-filled thin-walled steel box columns: Experiments,” Journal of Structural Engineering, Vol. 118, pp. 3036-3054 (1992).
[16] Grauers, M., “Composite columns of hollow steel sections filled with high strength concrete,” Goteborg (Sweden): Chalmers University of Technology, Ph.D. thesis (1993).
[17] Guo, L., Zhang S., Kim W.J., and Ranzi, G., “Behavior of square hollow steel tubes and steel tubes filled with concrete,” Thin-Walled Structures, Vol. 45, pp. 961-973 (2007).
[18] Hajjar, J. F., and Gourley, B. C., “Representation of concrete-filled steel tube cross section strength,” Journal of Structural Engineering, Vol. 122, pp. 1327-1336 (1996).
[19] Han, L. H., “Tests on stub columns of concrete-filled RHS sections,” Journal of Constructional Steel Research, Vol. 58, pp. 353-372 (2002).
[20] Hernández-Figueirido, D., Romero, M. L., Bonet, J. L., and Montalvá, J. M., “Ultimate capacity of rectangular concrete-filled steel tubular columns under unequal load eccentricities,” Journal of Constructional Steel Research, Vol. 68, pp. 107-117 (2012).
[21] Knowles, R. B., and Park, R., “Strength of concrete-filled steel tubular columns,” Journal of Structural Division, Vol. 95, pp. 2565–2587 (1969).
[22] Kwon, Y. B., and Jeong, I. K., “Resistance of rectangular concrete-filled tubular (CFT) sections to the axial load and combined axial compression and bending,” Thin-Walled Structures, Vol. 79, pp. 178-186 (2014).
[23] Lakshmi, B., and Shanmugam, N. E., “Nonlinear analysis of in-filled steel-concrete composite columns,” Journal of Constructional Steel Research, Vol. 128, pp. 922-933 (2002).
[24] Liang, Q. Q., and Uy, B., “Theoretical study on the post-local buckling of steel plates in concrete-filled box columns,” Computers and Structures, Vol. 75, pp. 479-490 (2000).
[25] Liang, Q. Q., Uy, B., and Liew, J. Y. R., “Strength of concrete-filled steel box columns with local buckling effects,” Australian Journal of Structural Engineering, Vol. 7,pp. 145-155 (2005).
[26] Liang, Q. Q., Uy, B., and Liew, J. Y. R., “Local buckling of steel plates in concrete-filled thin-walled steel tubular beam-columns,” Journal of Constructional Steel Research, Vol. 63, pp. 396-405 (2007).
[27] Liang, Q. Q., “Nonlinear analysis of short concrete filled steel tubular beam–columns under axial load and biaxial bending,” Journal of Constructional Steel Research, Vol. 64, pp. 295-304 (2008).
[28] Liang, Q. Q., Patel, V. I., and Hadi, M. N. S., “Biaxially loaded high-strength concrete-filled steel tubular slender beam-columns, Part I: Multiscale simulation,” Journal of Constructional Steel Reasearch, Vol. 75, pp.64-71 (2012).
[29] Mursi, M., and Uy, B., “Strength of concrete filled steel box columns incorporating interaction buckling,” Journal of Structural Engineering, Vol. 129, pp. 626-638 (2003).
[30] Matsui, C., Tsuda, K., and Ishibashi, Y., ‘‘Slender concrete filled steel tubular columns under combined compression and bending,’’ Proc., 4th Pacific Structural Steel Conference, Singapore, Pergamon, Vol. 3, pp. 29-36 (1995).
[31] Muñoz, P. R., and Hsu, C. T. T., “Behavior of biaxially loaded concrete-encased composite columns,” Journal of Structural Engineering, Vol. 123, pp. 1163-71 (1997).
[32] Patel, V. I., Liang, Q. Q., and Hadi, M. N. S., “High strength thin-walled rectangular concrete-filled steel tubular slender beam-columns, Part II: Behavior,” Journal of Constructional steel research, Vol. 70, pp.368-376 (2012).
[33] Schneider, S. P., “Axially loaded concrete-filled steel tubes,” Journal of Structural engineering, Vol. 124, pp. 1125-1138 (1998).
[34] Shakir-Khalil, H., and Zeghiche, J., “Experimental behavior of concrete-filled rectangular hollow-section columns,” Struct. Eng., Vol. 67(19), 346-353 (1989).
[35] Shakir-Khalil, H., and Mouli, M., “Further tests on concrete-filled rectangular hollow section columns,” Struct. Eng., Vol. 68(20), 405-413 (1990).
[36] Tomii, M., and Sakino, K., “Elastic–plastic behavior of concrete filled square steel tubular beam–columns,” Transactions of the Architectural Institute of Japan, Vol. 280, pp. 111-120 (1979).
[37] Tomii, M., Yoshimura, K., and Morishita, Y., “ Experimental studies on concrete filled steel tubular stub columns under concentric loading,” In: Proceedings of the international colloquium on stability of structures under static and dynamic loads, pp. 718-741 (1977).
[38] Varma, A. H., Ricles, J. M., Sause, R., and Lu, L., “Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns,” Journal of Constructional Steel Research, Vol. 58, pp. 725-758 (2002).
[39] Vrcelj, Z., and Uy, B., “Behavior and design of steel square hollow sections filled with high strength concrete,” Aust. J. Struct. Eng., Vol. 3, pp. 153-170 (2002).
[40] Uy, B., “Local and post-local buckling of concrete filled steel welded box columns,” Journal of Constructional Steel Research, Vol. 47, pp. 47-72 (1998).
[41] Uy, B., “Strength of concrete-filled steel box columns incorporating local buckling,” Journal of Structural Engineering, Vol. 126, pp. 341-352 (2000).
[42] Wright, H. D., “Local stability of filled and encased steel sections,” Journal of Structural Engineering, Vol. 121, pp. 1382-1388 (1995).
[43] Yu, M., Zha, X., Ye, J., and Li, Y., “A unified formulation for circle and polygon concrete-filled steel tube columns under axial compression,” Engineering Structures, Vol. 49, pp. 1-10 (2013).
[44] Zhang, W., and Shahrooz, B. M., “Comparison between ACI and AISC for concrete-filled tubular columns,” J. Struct. Eng., 125:1213-1223 (1999).
|