博碩士論文 102426029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:110 、訪客IP:18.117.75.226
姓名 李姿瑩(Tzu-Ying Li)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 以交易數量為基礎之加權關聯規則
(Quantity-based association rules with weights)
相關論文
★ 二階段作業研究模式於立體化設施規劃應用之探討–以半導體製造廠X及Y公司為例★ 推行TPM活動以改善設備總合效率並提昇 企業競爭力...以U公司桃園工廠為例
★ 資訊系統整合業者行銷通路策略之研究★ 以決策樹法歸納關鍵製程暨以群集法識別關鍵路徑
★ 關鍵績效指標(KPI)之建立與推行 - 在造紙業★ 應用實驗計劃法- 提昇IC載板錫球斷面品質最佳化之研究
★ 如何從歷史鑽孔Cp值導出新設計規則進而達到兼顧品質與降低生產成本目標★ 產品資料管理系統建立及導入-以半導體IC封裝廠C公司為例
★ 企業由設計代工轉型為自有品牌之營運管理★ 運用六標準差步驟與FMEA於塑膠射出成型之冷料改善研究(以S公司為例)
★ 台灣地區輪胎產業經營績效之研究★ 以方法時間衡量法訂定OLED面板蒸鍍有機材料更換作業之時間標準
★ 利用六標準差管理提升生產效率-以A公司塗料充填流程改善為例★ 依流程相似度對目標群組做群集分析- 以航空發動機維修廠之自修工件為例
★ 設計鏈績效衡量指標建立 —以電動巴士產業A公司為例★ 應用資料探勘尋找影響太陽能模組製程良率之因子研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 所謂挖掘關聯規則,是要從企業銷售交易資料庫中,找出項目之間的關聯性。過去大部份研究所找出的關聯規則通常只能表達項目間有否相關,卻無法表達它們在不同購買數量時的相關性,也忽略掉每項商品會因其利潤大小帶來不同重要性。真實世界往往是兩種資料都記錄的,而傳統關聯規則方法卻只使用了部份的資料來推導規則,這意味著我們只能得出部份的資訊來創造出部份的價值。如此所產生的問題是,我們將無法知道該以什麼樣的比例來搭配不同產品一齊販售,也無法得知該項搭配是否能為公司帶來利潤。因此若關聯規則能加入項目數量及利潤資訊的話,將非常有益於制訂行銷策略。
本文提出,以權重值大小表示為該筆交易紀錄之重要性,其中,於單筆交易紀錄中,每賣出一樣商品所獲得的利潤作為該筆交易紀錄的權重值,取代傳統關聯規則方法只在意商品有否被購買的想法,並依購買數量出現次數將商品作分割可以找尋出包含項目數量的關聯規則,本篇研究將利用指定項目數量的區間以權重的方式找出更具有意義的關聯規則。
摘要(英) Association Rule is an important type of knowledge representation revealing implicit relationships among the items present in large number of transactions. The traditional association rules mining apply binary execution. It cares about the attendance and absence of items in the transaction all along. Recent research shows that traditional mining method is not so realistic and it might be lost some important patterns. The patterns include the information from profit and purchased quantity of items that would also cause the meaning of transaction records are the same.
In our study, according to the different profit and purchased quantity of items in the transaction, the importance of each record should be different. We are going to modify Apriori Algorithm into non-binary way with weights. Which emphasizes the importance of the quantity, we use the separation methods to divide items into segmentations. Since the usage of the ignored data, we receive more information in detail with the results of the Quantity-based association rules. These rules bring the information that includes not only the occurrence relationship of the items but also the profit relationship for the business. We get the more specific relationship with the purchased situation than before.
關鍵字(中) ★ 資料挖礦
★ 關聯規則
★ 加權式關聯規則
★ 交易數量為基礎之關聯規則
關鍵字(英) ★ Data Mining
★ Association Rules Mining
★ Quantity-based ARM
★ Weighted ARM
論文目次 摘要 I
Abstract II
Contents III
List of Tables IV
Chapter 1 Introduction 1
1-1 Background and Motivation 1
1-2 Research Objectives 2
1-3 Research methodology 3
Chapter 2 Literature Review 5
2-1 Association Rules Mining Method 5
2-2 Weighted-Based ARM method 7
2-3 Purchase Quantity Based ARM Method 11
2-4 Transaction Records with Item Separating 15
2-5 Evaluation of Association Rules 18
Chapter 3 Methodology 22
3-1 Proposed Methodology 22
3-2 An Artificial Example 29
Chapter 4 Numerical Example 37
4-1 Demonstration of MATSUSEI Data 37
4-2 Evaluation of Association Rules 42
Chapter 5 Conclusion and Future Research 46
Reference 48
參考文獻 1. Adhikari, A. and P.R. Rao, “Association Rules Induced by Item and Quantity Purchased”, Springer-Verlag Berlin Heidelberg, pp. 478–485, 2008.
2. Brin, S., R. M. and C. S., “Beyond Market Baskets: Generalizing Association Rules to Correlations”, ACM, 1997.
3. Cai, C. H., A. W. C. Fu, Cheng and W.W. Kwong, “Mining Association Rules with Weighted Items”, Department of Computer Science and Engineering, The Chinese University of Hong Kong.
4. Chen, J., L. Kai, H. Haishan and X. Shasha, “Association Rules Mining Algorithm Based on Interest Measure And Its Application In Medical Audit”, International Clinical Studies Support Center(ICSSC), 2013.
5. Chi, X. and Z. W. Fang, “Review of Association Rule Mining Algorithm in Data Mining”, IEEE, 2011.
6. Dhanda, M., “An Approach To Extract Efficient Frequent Patterns From Transactional Database”, International Journal of Engineering Science and Technology, Vol. 3, July 2011.
7. Ibrahim, S. P. S. and J. S. Revathy, “A Novel Quantity based Weighted Association Rule Mining”, International Journal of Engineering Inventions, Vol.4, pp. 33-38, August 2014.
8. Khan, M. S., M. Muyeba and F. Coenen, “Weighted Association Rule Mining from Binary and Fuzzy Data”, Springer-Verlag Berlin Heidelberg, pp. 200–212, 2008.
9. Kumar, G. P. and A. Sarkar, “Weighted Association Rule Mining and Clustering in Non-Binary Search Space”, IEEE, Seventh International Conference on Information Technology, 2010.
10. Kumar, P. and A. VS, “Discovery of Weighted Association Rules Mining”, IEEE, 2010.

11. Liaquat, M.s., T. Basit and M.A.H Syed, “Interesting Measures for Mining Association Rules”, IEEE, 2004.
12. Liu, B., W. H., W. Ke and C. Shu, “Visually Aided Exploration of Interesting Association Rules”,Springer-Verlag Berlin Heidelberg,pp. 380-389, 1999.
13. Martin, D., A. Rosete and J. A. Fdez, “A New Multi-objective Evolutionary Algorithm for Mining a Reduced Set of Interesting Positive and Negative Quantitative Association Rules”, IEEE, Vol. 18, No. 1, 2013.
14. Ordonez, C., C. A. S. and Levien de B., “Discovery Interesting Association Rules in Medical Data”, The National Library of Medicine, 2000.
15. Rathod, A., A. Dhabariya, and C. Thacker, “An Approach to Mine Significant Frequent Patterns by Quantity Attribute”, IEEE, Fourth International Conference on Communication Systems and Network Technologies, 2014.
16. Sandhu, P. S., D. S. Dhaliwal and S. N. Panda, “Mining utility-oriented association rules: An efficient approach based on profit and quantity”, International Journal of the Physical Sciences, Vol. 6(2), pp. 301-307, January 18, 2011.
17. Sanhu, P. S., D. S. Dhaliwal, S. N. Panda and A. Bisht, “An Improvement in Apriori Algorithm Using Profit and Quantity”, IEEE, Second International Conference on Computer and Network Technology, 2010.
18. Sujatha, D. and N. CH, “Quantitative Association Rule Mining on Weighted Transactional Data”, International Journal of Information and Education Technology, Vol. 1, No. 3, 2011.
19. Tan, P. N., V. Kumar and J. Srivastava, “Selecting the Right Interestingness Measure for Association Patterns”, ACM, 2002.
20. Tao, F., F. Murtagh and M. Farid, “Weighted Association Rule Mining using Weighted Support and Significance Framework”, ACM, August 24-27, 2003.

21. Tsai, P. S. M. and C. M. Chen, “Mining Quantitative Association Rules in a Large Database of Sales Transaction”, Journal of Information Science and Engineering 17, 667-681, 2001.
22. Tsaia, P. S. M. and C. M. Chenb, “Mining interesting association rules from customer databases and transaction databases”, Information Systems, vol.29(8), pp.685-696, 2004.
23. Wu, X., C. Zeng and S. Zhang, “Efficient Mining of both Positive and Negative Association Rules”, ACM, Transaction on Information Systems, Vol. 22, No. 3, 2004.
指導教授 曾富祥(Fu-Shiang Tseng) 審核日期 2015-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明