博碩士論文 102324601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.15.221.165
姓名 馮喆(Zhe Feng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究★ 尖針狀鈷矽化物/矽單晶異質奈米線陣列結構之製備及其性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究大致可以分為兩大部分:第一部分為觀察在金屬催化無電鍍銀循環蝕刻下矽晶奈米線尖針化的演化趨勢並描述反應機制,同時測量其場發射效應;第二部分為研究在高溫下鐵金屬薄膜與矽晶奈米線之矽化反應。

本實驗利用聚苯乙烯奈米球模板結合金屬催化化學蝕刻法在Si(110)矽晶基材上製備大面積準直規則有序排列之矽晶奈米線陣列,然後在金屬催化無電鍍銀循環蝕刻下修飾矽晶奈米線成尖針狀結構,接著藉由SEM、TEM以及水滴接觸角量測觀察矽晶奈米線尖針化的演化趨勢並描述其反應機制,最後測量並探討循環蝕刻0次、2次以及4次矽晶奈米線之場發射效應。

本實驗藉由電子槍熱蒸鍍系統在規則有序排列之矽晶奈米線陣列模板傾角鍍制一層20 nm鐵薄膜,並在高溫爐管下進行退火反應。利用SEM、TEM以及EDS觀察研究在900 oC下鐵金屬薄膜與矽晶奈米線介面處的矽化反應及擴散機制,並利用固-液-固機制解釋在1000 oC下矽晶奈米線表面生成奈米細線的現象。

摘要(英) There are two parts in this study. The first part is observation the sharped trends and discused the etching mechanism of silicon nanowires by cycle metal-assisted eletroless chemical etching, and then measured the field emission property of silicon nanowires after different etching times. And the second part is discussing the diffusion reaction of iron film and Silicon nanowire during different temperature.

In this study, we applied polystyrene nanosphere template and metal-assisted chemical etching to fabricate of large area single-crystalline silicon nanowires array on silicon (110) substrate, then modified the silicon nanowires to sharp the structure by cycle metal-assisted eletroless chemical etching. We observed and discussed the sharped trends and the etching mechanism by SEM、TEM and contact angle analysis. At last we measured the field emission property of silicon nanowires during various treatments.

In this work, we deposited iron for 20 nm on silicon nanowires array by lateral deposition, then treated it by high temperature to form metal silicide nanoparticles on silicon nanowires. We applied SEM、TEM and EDS to discussing the diffusion reaction of iron film and silicon nanowires and quantitative analysis during 900 oC and 1000 oC. We gave an explanation of growing small nanowires from the surface of silicon nanowire at 1000 oC by Solid-Liquid-Solid mechanism.

關鍵字(中) ★ 矽晶奈米線
★ 場發射效應
★ 金屬催化無電鍍
★ 固-液-固機制
★ 尖針狀
★ 矽化物
關鍵字(英)
論文目次 摘要 i

Abstract ii

致谢 iii

目录 iv

第一章 前言及文獻回顧 1

1-1前言 1

1-2矽單晶奈米線製備方法 4

1-2-1矽單晶奈米線應用 4

1-2-2矽單晶奈米線成長機制及優缺點 5

1-2-3金屬催化化學蝕刻法製備矽單晶奈米線陣列 7

1-3奈米球微影技術 9

1-3-1奈米球的自組裝行為 9

1-3-2奈米球微影技術結合金屬催化化學蝕刻法製備單晶矽奈米柱陣列 10

1-3-3金屬催化無電鍍銀蝕刻矽晶奈米線 10

1-4親疏水性質及相關理論 11

1-5場發射元件 12

1-5-1場發射相關理論 12

1-5-2矽晶基材的場發射效應研究 14

1-6鐵矽化物 15

1-6-1金屬矽化物的製備與應用 15

1-6-2薄膜鐵金屬矽化物 18

1-6-3鐵金屬矽化物奈米線 19

1-7研究動機及目標 21

第二章 實驗步驟及儀器設備 23

2-1實驗步驟 23

2-1-1矽晶基材使用前處理 23

2-1-2奈米球陣列模板製備 23

2-1-3氧電漿蝕刻調變奈米球模板的尺寸 24

2-1-4蒸鍍金薄膜 24

2-1-5金屬催化化學蝕刻製備矽單晶奈米線陣列 24

2-1-6金屬催化無電鍍蝕刻法修飾矽單晶奈米線 25

2-1-7熱氧化法修飾矽單晶奈米線之線寬 25

2-1-8凖直鐵矽化物奈米線陣列之製備 26

2-2試片分析 26

2-2-1掃描式電子顯微鏡 26

2-2-2穿透式電子顯微鏡 27

2-2-3高解析穿透式電子顯微鏡 27

2-2-4 X光能量散佈光譜儀 28

2-2-5拉曼光譜分析 28

2-2-6 XRD圖譜分析 29

2-2-7場發射性質測量 29

2-2-8水滴接觸角測量儀 30

第三章 結果與討論 31

3-1製備奈米球模板 31

3-1-1製備單層聚苯乙烯奈米球模板 31

3-1-2氧電漿蝕刻調控單層聚苯乙烯奈米球模板 31

3-1-3製備矽單晶奈米線陣列 32

3-1-4以熱氧化法調控矽單晶奈米線尺寸 33

3-2以金屬催化無電鍍方法製備尖針狀矽單晶奈米線 34

3-3尖針化之矽晶奈米線的水滴接觸角變化 36

3-4尖針狀矽晶奈米線之場發射性質測量與探討 38

3-5製備鐵矽化物奈米線陣列及其性質測量 42

第四章 結論與未來展望 48

第五章 參考文獻 50

圖目錄 64

參考文獻 [1] Y. C. Chi and J. H. Chao, “Absence of a ferromagnetic phase in pure Ge quantum dots and Ge/SiO2 multilayer films,” Journal of Magnetism and Magnetic Materials 363 (2014) 108-113.

[2] W. Lisowski, E. Grzanka, J. W. Sobczak, M. Krawczyk, A. Jablonski, R. Czernecki, M. Leszczyn- ski and Tadeusz Suski, “ XPS method as a useful tool for studies of quantum well epitaxial materials: Chemical composition and thermal stability of InGaN/GaN multilayers,” Journal of Alloys and Compounds 597 (2014) 181-187.

[3] L. Chen, K. Yang, H. Liu and X. Wang, “Carbon nanotube supported Pd catalyst for liquid-phase hydrodehalogenation of bromobenzene,” Carbon 46 (2008) 2137-2139.

[4] H. Wang, B. Hu, L. Zhang, M. Li, E. Ja and Z. Liu, “Enhanced structural ordering and coercivity in FePt nanowire arrays by addition of Zn,” Journal of Magnetism and Magnetic Materials 362 (2014) 47-51.

[5] S. K. Srivastava, D. Kumar, S. W. Schmitt, K. N. Sood, S. H. Christiansen and P. K. Singh, “Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics,” Nanotechnology 25 (2014) 175601.

[6] U. Dembereldorj, S. Y. Choi, E. O. Ganbold, N. W. Song, D. Kim, J. Choo, S. Y. Lee, S. Kim and S. W. Joo, “Gold nanorod-assembled pegylated graphene-oxide nanocomposites for photothermal cancer therapy,” Photochemistry and Photobiology 90 (2014) 659-666.

[7] S. H. Huang, S. C. Twan, S. L. Cheng, Tu Lee, J. C. Hu, L. T. Chen and S. W. Lee, “Influence of al addition on phase transformation and thermal stability of nickel silicides on Si(001),” Journal of Alloys and Compounds 586 (2014) S362-S367.

[8] J. F. Hsu, B. R. Huang, C. S. Huang and H. L. Chen, “ Silicon nanowires as PH sensor,” Japanese Journal of Applied Physics 4B (2005) 2626–2629

[9] Y. Engel, R. Elnathan, A. Pevzner, G. Davidi, E. Flaxer and F. Patolsky, “Supersensitive detection of explosives by silicon nanowire arrays,” Angew Chemical 49 (2010) 6830-6835.

[10] Zhou and X. T., “Silicon nanowires as chemical sensors,” Chemical Physics Letters 369.1 (2003) 220-224.

[11] K. Q. Peng, X. Wang and S. T. Lee, “Gas sensing properties of single crystalline porous silicon nanowires,” Applied Physics Letters 95 (2009) 243112.

[12] J. Y. Kim, J. H. Ahn, D. I. Moon, T. J. Park, S. Y. Lee and Y. K. Choi, “Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor,” Biosensors and Bioelectronics 55 (2014) 162-167.

[13] K. Kang, H. S. Lee, D. W. Han, G. S. Kim and D. Lee, “Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery,” Applied Physics Letters 96 (2010) 053110.

[14] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins and Y. Cui, “High-performance lithium battery anodes using silicon nanowires,” Nature Nanotechnology 3 (2007) 31-35.

[15] H. C. Wu, H. Y. Tsai, H. T. Chiu and C. Y. Lee, “Silicon rice-straw array emitters and their superior electron field emission,” Applied Materials & Interfaces 2 (2010) 3285-3288.

[16] Y. F. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. T. Chiu, C. Y. Lee and I. N. Lin, “Stacked silicon nanowires with improved field enhancement factor,” Applied Materials & Interfaces 2 (2010) 331-334.

[17] H. C. Wu, T. Y. Tsai, F. H. Chu, N. H. Tai, H. N. Lin, H. T. Chiu and C. Y. Lee, “Electron field emission properties of nanomaterials on rough silicon rods,” Journal of Physical Chemistry 114 (2010) 130–133

[18] E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Letters 10 (2010) 1082-1087.

[19] K. Peng, X. Wang and S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Applied Physics Letters 92 (2008) 163103.

[20] R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid mechanism of single crystal growth,” Applied Physics Letters 4 (1964) 89.

[21] M. Lu, M. K. Li, L. B. Kong, X. Y. Guo and H. L. Li, “Silicon quantum-wires arrays synthesized by chemical vapor deposition and its micro-structural properties,” Chemical Physics Letters 374 (2003) 542-547.

[22] M. Hetzel, A. Lugstein, C. Zeiner, T. W´ojcik, P. Pongratz and E. Bertagnolli, “Ultra-fast vapour–liquid–solid synthesis of Si nanowires using ion-beam implanted gallium as catalyst,” Nanotechnology 22 (2011) 395601.

[23] J. Hu, T. W. Odom and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Accounts of Chemical Research 32 (1999) 435-445.

[24] S. J. Rathi, D. J. Smith and J. Drucker, “Guided VLS growth of epitaxial lateral Si nanowires,” Nano Letters 13 (2013) 3878−3883.

[25] Y. H. Park, J. Kim, H. Kim, I. Kim, K. Y. Lee, D. Seo, H. J. Choi and W. Kim, “Thermal conductivity of VLS-grown rough Si nanowires with various surface roughnesses and diameters,” Applied Physics A 104 (2011) 7-14.

[26] T. W. Ho and F. C. N. Hong, “A reliable method to grow vertically-aligned silicon nanowires by a novel ramp-cooling process,” Applied Surface Science 258 (2012) 7989-7996.

[27] K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang and S. T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Applied Physics Letters 90 (2007) 163123.

[28] T. Moon , L. Chen , S. Choi , C. Kim and W. Lu, “Efficient Si nanowire array transfer via bi-layer structure formation through metal-assisted chemical etching,” Advanced Functional Materials 24 (2014) 1949-1955.

[29] S. Zhang, X. Wang, H. Liu and W. Shen, “Controllable light-induced conic structures in silicon nanowire arrays by metal-assisted chemical etching,” Nanotechnology 25 (2014) 025602.

[30] K. Liu, S. Qu, F. Tan, Y. Bi, S. Lu and Z. Wang, “Ordered silicon nanowires prepared by template-assisted morphological design and metal-assisted chemical etching,” Materials Letters 101 (2013) 96-98.

[31] Z. Huang, N. Geyer, P. Werner, J. De Boor and U. Gösele, “Metal-assisted chemical etching of silicon: a review,” Advanced Materials 23 (2011) 285-308.

[32] B. P. Azeredo, J. Sadhu, J. Ma, K. Jacobs, J. Kim, K. Lee, J. H. Eraker, X. Li, S. Sinha, N. Fang, P. Ferreira and K. Hsu, “Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching,” Nanotechnology 24 (2013) 225305.

[33] V. A. Sivakov, G. Bronstrup, B. Pecz, A. Berger, G. Z. Radnoczi, M. Krause and S. H. Christiansen, “Realization of vertical and zigzag single crystalline silicon nanowire architectures,” Journal of Physical Chemistry C114 (2010) 3798–3803.

[34] S. Y. Chien, C. P. Cheng, H. L. Sung and Y. M. Shang, “Effects of silicon nanowire array fabricated by spontaneous electrochemical reaction on volatile organic solvent sensing,” Nanoelectronics Conference (2011) 1-2.

[35] J. Y. Jung, H. D. Um, S. W. Jee, K. T. Park, J. H. Bang and J. H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Solar Energy Materials & Solar Cells 112 (2013) 84–90.

[36] S. L. Cheng, C. H. Chung and H. C. Lee, “A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001) Si substrates,” Journal of the Electrochemical Society 155 (2008) 711-714.

[37] B. Ozdemir, M. Kulakci, R. Turan and Husnu Emrah Unalan, “Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires,” Nanotechnology 22 (2011) 155606.

[38] Y. Kobayashi and S. Adachi, “Properties of Si nanowires synthesized by galvanic cell reaction,” Japanese Journal of Applied Physics 49 (2010) 075002.

[39] D. P. Yu, C. S. Lee, I. Bello, X. S. Sun, Y. H. Tang, G. W. Zhou, Z.G. Bai, Z. Zhang and S. Q. Feng, “Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature,” Solid State Communications 105 (1998) 403–407.

[40] Y. H. Tang, Y. F. Zhang, N. Wang, C. S. Lee and X. D. Han, “Morphology of Si nanowires synthesized by high-temperature laser ablation,” Journal of Physical Chemistry 85 (1999) 7981-7983.

[41] A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279 (1998) 208-211.

[42] N. Fukata, S. Matsushita, N. Okada, J. Chen, T. Sekiguchi and N. Uchida. K. Murakami, “Impurity doping in silicon nanowires synthesized by laser ablation,” Applied Physics A93 (2008) 589–592.

[43] S. Merzsch, F. Steib, H. S. Wasisto, A. Stranz, P. Hinze, T. Weimann and A. Waag, “Production of vertical nanowire resonators by cryogenic-ICP-DRIE,” Microsyst Technol 20 (2014) 759–767.

[44] J. Nakamura, K. Higuchi and K. Maenaka, “Vertica. Si nanowire with ultra-high-aspect-ratio by combined top-down processing technique,” Microsyst Technol 19 (2013) 433–438.

[45] S. Lee, J. Yoon, B. Koo, D. H. Shin, J. H. Koo, C. J. Lee and T. Lee, “Formation of vertically aligned cobalt silicide nanowire arrays through a solid-state reaction,” Nanotechnology IEEE Transactions 12 (2013) 704-711.

[46] Y. Yang, G. Meng, X. Liu, L. Zhang, Z. Hu, C. He and Y. Hu, “Aligned SiC porous nanowire arrays with excellent field emission properties converted from si nanowires on silicon wafer,” Journal of Physical Chemistry C112 (2008) 20126–20130.

[47] Y. J. Hung, S. L. Lee, L. C. Beng, H. C. Chang, Y. J. Huang, K. Y. Lee and Y. S. Huang, “Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application,” Thin Solid Films 556 (2014) 146–154.

[48] H. F. Hsu, J. Y. Wang and Y. H. Wu, “KOH etching for tuning diameter of Si nanowire arrays and their field emission characteristics,” Journal of the Electrochemical Society 161 (2013) 53-56.

[49] B. Schroeder, U. Weber, H. Seitz, A. Ledermann and C. Mukherjee, “Current status of the thermo-catalytic (hot-wire) CVD of thin silicon films for photovoltaic applications,” Thin Solid Films 395.1 (2001) 298-304.

[50] K. Brühne, M. B. Schubert, C. Köhler and J. H. Werner, “Nanocrystalline silicon from hot-wire deposition a photovoltaic material,” Thin Solid Films 395.1 (2001) 163-168.

[51] J. K. Rath, F. D. Tichelaar, H. Meiling and R. E. I. Schropp, “Hot-wire CVD poly-silicon films for thin film devices,”[C]//MRS Proceedings. Cambridge University Press (1998) 507: 879.

[52] H. Meiling, A. M. Brockhoff, J. K. Rath and R. E. I. Schropp, “Hydrogenated amorphous and polycrystalline silicon TFTs by hot-wire CVD,” [J] Journal of non-crystalline solids (1998) 227: 1202-1206.

[53] E. Iwaniczko, Y. Xu, R. E. I. Schropp and A. H. Mahan, “ Microcrystalline silicon for solar cells deposited at high rates by hot-wire CVD,” [J]Thin Solid Films (2003) 430(1) 212-215.

[54] M. Lu, M. K. Li, L. B. Kong, X. Y. Guo and H. L Li, “Silicon quantum-wires arrays synthesized by chemical vapor deposition and its micro-structural properties,” [J]Chemical physics letters (2003) 374(5) 542-547.

[55] M. M. Adachi, M. P. Anantram and K. S. Karim, “Optical properties of crystalline− amorphous core− shell silicon nanowires,” [J] Nano letters 2010 10(10) 4093-4098.

[56] R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid mechanism of single crystal growth,” Applied Physics Letters 4 (1964) 89-90.

[57] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu and S. Q. Feng, “Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism,” Chemical Physics Letters 323 (2000) 224–228.

[58] D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi and S. Q. Feng, “Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism,” Physic E9 (2001) 305-309.

[59] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee and S. T. Lee, “Nucleation and growth of Si nanowires from silicon oxide,” Physical Review B 58 (1998) 24.

[60] T. Wells, M. M. El-Gomati, J. Wood and S. Johnson, “Low temperature reactive ion etching of silicon with SF6O2 plasmas,” Journal of Vacuum Science and Technology B15 (1997) 397.

[61] A. Zeniou, K. Ellinas, A. Olziersky and E. Gogolides, “Ultrahigh aspect ratio Si nanowires fabricated with plasma etching: plasma processing, mechanical stability analysis against adhesion and capillary forces and oleophobicity,” Nanotechnology 25 (2014) 035302.

[62] K. Q. Peng, Y. J. Yan, S. P. Gao and J. Zhu, “Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry,” Advanced Materials 14 (2002) 1164-1167.

[63] V. Schmidt, S. Senz and U. Gösele, “Diameter-dependent growth direction of epitaxial silicon nanowires,” Nano Letters 5 (2005) 931-935.

[64] Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell and C. M. Lieber, “Controlled growth and structures of molecular-scale silicon nanowires,” Nano Letters 4 (2004) 433-436.

[65] E. K. Lee, B. L. Choi, Y. D. Park, Y. Kuk, S. Y. Kwon and H. J. Kim, “Device fabrication with solid–liquid–solid grown silicon nanowires,” Nanotechnology 19 (2008) 185701.

[66] Y. Y. Wong, M. Yahaya, M. M. Salleh and B. Y. Majlis, “Controlled growth of silicon nanowires synthesized via solid–liquid–solid mechanism,” Science and Technology of Advanced Materials 6 (2005) 330–334.

[67] X. Ying-Jie, X. Zhong-He, Y. Da-Peng, H. Qing-Ling, Y. Han-Fei, F. Sun-Qi and X. Zeng-Quan, “Growth of silicon nanowires by heating Si substrate,” Chinese Physical Letters 19 (1998) 240.

[68] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang and S. T. Lee, “Diameter modification of silicon nanowires by ambient gas,” Applied Physics Letters 75 (1999) 1842.

[69] K. Tai, K. Sun, B. Huang and S. J. Dillon, “Catalyzed oxidation for nanowire growth,” Nanotechnology 25 (2014) 145603.

[70] E. Gogolides, S. Grigoropoulos and A. G. Nassiopoulos, “Highly anisotropic room-temperature sub-half-micron Si reactive ion etching using fluorine only containing gases,” Microelectronic Engineering 27 (1995) 449-452.

[71] S. Merzsch, F. Steib, H. S. Wasisto, A. Stranz, P. Hinze, T. Weimann and A. Waag, “Production of vertical nanowire resonators by cryogenic‑ICP–DRIE,” Microsyst Technol 20 (2014) 759–767.

[72] S. Y. Park, S. J. Di Giacomo, R. Anisha, P. R. Berger, P. E. Thompson and I. Adesida, “Fabrication of nanowires with high aspect ratios utilized by dry etching with SF6:C4F8 and self-limiting thermal oxidation on Si substrate,” journal of Vacuum Science and Technology B 28 (2010) 4.

[73] Y. Y. Song, Z. D. Gao, J. J. Kelly and X. H. Xia, “Galvanic deposition of nanostructured noble-metal films on silicon,” Electrochemical and Solid-State Letters 8 (2005) 10.

[74] K. Peng, Y. Yan, S. Gao and J. Zhu, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition,” Advanced Functional Materials 13 (2003) 127–132.

[75] K. Q Peng, Z. P Huang and J. Zhu, “Fabrication of large-area silicon nanowire p–n junction diode arrays,” Advanced Materials 16 (2004) 73–76.

[76] K. Peng and J. Zhu, “Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution,” Electrochimica Acta 49 (2004) 2563–2568.

[77] M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee and N. B. Wong, “Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching,” Journal of Physical Chemistry C 112 (2008) 4444-4450.

[78] T. Qiu, X. L. Wu, Y. F. Mei, P. K. Chu and G. G. Siu, “Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method,” Applied Physics 81 (2005) 669–671.

[79] Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu and U. Gösele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching,” Nano Letters 8 (2008) 3046-3051.

[80] H. Fang, Y. Wu, J. Zhao and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology 17 (2006) 3768-3774.

[81] S. Su, L. Lin, Z. Li, J. Feng and Z. Zhang, “The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays,” Nanoscale Research Letters 8 (2013) 405.

[82] H. Chen, H. Wang, X. H. Zhang, C. S. Lee and S. T. Lee, “Wafer-scale synthesis of single-crystal zigzag silicon nanowire arrays with controlled turning angles,” Nano Letters 10 (2010) 864–868.

[83] J. Kim, H. Han, Y. H. Kim, S. H. Choi, J. C. Kim and W. Lee, “Au/Ag bilayered metal mesh as a Si etching catalyst for controlled fabrication of Si nanowires,” Acs Nano 5 (2011) 3222–3229.

[84] H. Fang, Y. Wu, J. Zhao and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology 17 (2006) 3768-3774.

[85] G. M. Whitesides, J. P. Mathias and C. T. Seto, “A chemical strategy for the synthesis of nanostructures,”No. TR-45. Harvard Univ Cambridge Ma Dept of Chemistry, 1991.

[86] M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry,quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chemical Reviews 104 (2004) 293-346.

[87] F. Caruso, H. Lichtenfeld, M. Giersig and H. Möhwald, “Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particles,” Journal of the American Chemical Society 120 (1998) 8523-8524.

[88] D. J. Kirby, B. D. Smith and C. D. Keating, “Microwell-directed self-assembly of vertical nanowire arrays,” Particle & Particle Systems Characterization 31 (2014) 492–499.

[89] G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science 295. (2002).

[90] Y. Xia, B. Gates, Y. Yin and Y. Lu, “Monodispersed colloidal spheres old materials with new applications,” Advanced Materials 12 (2000) 10.

[91] J. Aizenberg, P. V. Braun and P. Wiltzius, “Patterned colloidal deposition controlled by electrostatic and capillary forces,” Physical Review Letters 84 (2000) 2997-3000.

[92] R. Micheletto, H. Fukuda and M. Ohtsu, “A simple method for the production of a two-dimensional, ordered array of small latex particles,” Langmuir 11 (1995) 3333-3336.

[93] J. Rybczynski, U. Ebels and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids and Surfaces Physicochem. Eng. Aspects, 219 (2003) 1-6.

[94] H. Li, J. Low, K. S. Brown and N. Wu, “Large-area well-ordered nanodot array pattern fabricated with self-assembled nanosphere template,” The IEEE Sensors Journal 8 (2008) 6.

[95] J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography a materials general fabrication process for periodic particle array surfaces,” journal of Vacuum Science and Technology A 13 (1995) 1553-1558.

[96] Z. Huang, H. Fang and J. Zhu, “Fabrication of silicon nanowire arrays with controlled diameter, length, and density,” Advanced Materials 19 (2007) 744-748.

[97] S. L. Cheng, C. Y. Chen and S. W. Lee, “Kinetic investigation of the electrochemical synthesis of vertically-aligned periodic arrays of silicon nanorods on (001) Si substrate,” Thin Solid Films 518 (2010) S190–S195.

[98] B. Sun, T. Shi, W. Sheng and G. Liao, “Controlled fabrication of silicon nanowires via nanosphere lithograph and metal assisted chemical etching,” Journal of Nanoscience and Nanotechnology 13 (2013) 5708–5714.

[99] H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. Yip and C. Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping,” Journal of Materials Chemistry A 1 (2013) 9942–9946.

[100] R. N. Wenzel, “Surface roughness and contact angle,” The Journal of Physical Chemistry 53.9 (1949) 1466-1467.

[101] R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 119. No. 781. The Royal Society, 1928.

[102] F. Zhao, G. A. Cheng, R. T. Zheng, D. D. Zhao, S. L. Wu and J. H. Deng, “Field emission enhancement of Au-Si nano-particle-decorated silicon nanowires,” Nanoscale Research Letters 6 (2011) 176.

[103] H. S. Uh and S. S. Park, “Investigation of various metal silicide field emitters and their application to field emission display,” Journal of The Electrochemical Society 150 (2003) H12-H16.

[104] H. Y. Hsieh, S. H. Huang, K. F. Liao, S. K. Su, C. H. Lai and L. J. Chen, “High-density ordered triangular Si nanopillars with sharp tips and varied slopes: one-step fabrication and excellent field emission properties,” Nanotechnology 18 (2007) 505305.

[105] L. Xu, W. Li, J. Xu, J. Zhou, L. Wu, X. G. Zhang and K. Chen, “Morphology control and electron field emission properties of high-ordered Si nanoarrays fabricated by modified nanosphere lithography,” Applied Surface Science 255 (2009) 5414–5417.

[106] Y. M. Chang, P. H. Kao, H. M. Tai, H. W. Wang, C. M. Lin, H. Y. Lee and J. Y. Juang, “Enhanced field emission characteristics in metal-coated Si-nanocones,” Physical Chemistry Chemical Physics 15 (2013) 10761-10766.

[107] H. C. Wu, H. Y. Tsai, H. T. Chiu and C. Y. Lee, “Silicon rice-straw array emitters and their superior electron field emission,” Applied Material and Interfaces 2 (2010) 3285-3288.

[108] S. Lee, J. Yoon, B. Koo, D. H. Shin, J. H. Koo, C. J. Lee and T. Lee, “Formation of vertically aligned cobalt silicide nanowire arrays through a solid-state reaction,” IEEE Transactions on nanotechnology 12 (2013).

[109] Y. F. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. T. Chiu, C. Y. Lee and I. N. Lin, “Stacked silicon nanowires with improved field enhancement factor,” ACS applied materials & interfaces 2.2 (2010) 331-334.

[110] Y. F. Tzeng, K. H. Liu, Y. C. Lee, S. J. Lin, I. N. Lin, C. Y. Lee and H. T. Chiu, “Fabrication of an ultra nanocrystalline diamond-coated silicon wire array with enhanced field-emission performance,” Nanotechnology 18.43 (2007) 435703.

[111] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451.7175 (2008) 163-167.

[112] Y. J. Hung, S. L. Lee, L. C. Beng, H. C. Chang, Y. J. Huang, K. Y. Lee and Y. S. Huang, “Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application,” Thin Solid Films 556 (2014) 146-154.

[113] T. Ootsuka, Z. Liu, M. Osamura, Y. Fukuzawa, R. Kuroda, Y. Suzuki and Y. Makita, “Studies on aluminum-doped ZnO films for transparent electrode and antireflection coating of β-FeSi2 optoelectronic devices,” Thin Solid Films 476.1 (2005) 30-34.

[114] T. Mochizuki, T. Tsujimaru, M. Kashiwagi and Y. Nishi, “Film properties of MoSi2 and their application to self-aligned MoSi2 gate MOSFET,” Solid-State Circuits, IEEE Journal of 15.4 (1980) 496-500.

[115] J. B. Lasky, J. S. Nakos, O. J. Cain and P. J. Geiss, “Comparison of transformation to low-resistivity phase and agglomeration of TiSi, and COS,” IEEE Transactions on Electron Devices. 38 (1991) 2.

[116] H. F. Hsu, H. Y. Chan, T. H. Chen, H. Y. Wu, S. L. Cheng and F. B. Wu, “Epitaxial growth of uniform NiSi2 layers with atomically flat silicide/Si interface by solid-phase reaction in Ni–P/Si(100) systems,” Applied Surface Science 257 (2011) 7422–7426.

[117] J. Lu, X. Gao, S. L. Zhang and L. Hultman, “Crystallization of NiSix in a body-centered cubic structure during solid-state reaction between an ultrathin Ni film and Si (001) substrate at 150−350 °C,” Crystal Growth & Design 13 (2013) 1801−1806.

[118] D. Connétable and O. Thomas, “First-principles study of nickel-silicides ordered phases,” Journal of Alloys and Compounds 509 (2011) 2639–2644.

[119] H. Iwai, T. Ohguro and S. I. Ohmi, “NiSi silicide technology for scaled CMOS,” Microelectronic Engineering 60 (2002) 157–169.

[120] Y. Wu, J. Xiang, C. Yang, W. Lu and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430 (2004) 1.

[121] G. F. Iriarte, “Growth of nickel silicide (NiSix) nanowires by silane decomposition,” Current Applied Physics 11 (2011) 82-86.

[122] H. F. Hsu, C. H. Tseng and T. H. Chen, “Formation of epitaxial NiSi2 nanowires on Si (100) surface by atomic force microscope nanolithography,” Journal of Nanoscience and Nanotechnology 10 (2010) 4533–4537.

[123] K. Radermacher, S. Mantl, C. Dieker, H. Lüth and C. Freiburg, “Growth kinetics of iron silicides fabricated by solid phase epitaxy or ion beam synthesis,” Thin Solid Films 215.1 (1992) 76-83.

[124] M. G. Grimaldi, C. Bongiorno, C. Spinella, E. Grilli, L. Martinelli, M. Gemelli and M. Fanciulli, “Luminescence from β-FeSi2 precipitates in Si. I. Morphology and epitaxial relationship,” Physical Review B 66.8 (2002) 085319.

[125] M. V. Gomoyunova, D. E. Malygin, I. I. Pronin, A. S. Voronchikhin, D. V. Vyalikh and S. L. Molodtsov, “Initial stages of iron silicide formation on the Si (100) 2× 1 surface,” Surface Science 601.21 (2007) 5069-5076.

[126] Z. Liu, M. Osamura, T. Ootsuka, S. Wang, Y. Fukuzawa, Y. Suzuki and Y. Makita, “Doping of β-FeSi2 films with boron and arsenic by sputtering and its application for optoelectronic devices,” Optical Materials 27.5 (2005) 942-947.

[127] C. Lal, R. Dhunna, R. S. Dhaka, S. R. Barman and I. P. Jain, “A silicon/iron-silicide light-emitting diode operating at a wavelength of 1.5 μm,” Nature 387.6634 (1997) 686-688.

[128] N. Dahal and V. Chikan, “Phase-controlled synthesis of iron silicide (Fe3Si and FeSi2) nanoparticles in solution,” Chemistry of Materials 22.9 (2010) 2892-2897.

[129] N. Promros, K. Yamashita, C. Li, K. Kawai, M. Shaban, T. Okajima and T. Yoshitake, “N-type nanocrystalline FeSi2/intrinsic Si/p-Type Si heterojunction photodiodes fabricated by facing-target direct-current sputtering,” Japanese Journal of Applied Physics, 51(2R) (2012) 021301.

[130] N. Dahal and V. Chikan, “Phase-controlled synthesis of iron silicide (Fe3Si and FeSi2) nanoparticles in solution,” Chemistry of Materials 22.9 (2010) 2892-2897.

[131] F. Esaka, H. Yamamoto, N. Matsubayashi, Y. Yamada, M. Sasase, K. Yamaguchi and T. Kimura, “X-ray photoelectron and X-ray absorption spectroscopic study on β-FeSi2 thin films fabricated by ion beam sputter deposition,” Applied Surface Science 256.10 (2010) 3155-3159.

[132] S. W. Hung, P. H. Yeh, L. W. Chu, C. D. Chen, L. J. Chou, Y. J. Wu and L. J. Chen, “Direct growth of β-FeSi2 nanowires with infrared emission, ferromagnetism at room temperature and high magnetoresistance via a spontaneous chemical reaction method,” Journal of Materials Chemistry 21.15 (2011) 5704-5709.

[133] J. C. González, D. R. Miquita, M. I. N. da Silva, R. Magalhães-Paniago, M. V. B. Moreira and A. G. de Oliveira, “Phase formation in iron silicide nanodots grown by reactive deposition epitaxy on Si (111),” Physical Review B 81.11 (2010) 113403.

[134] M. Yoshimizu, R. Kobayashi, M. Saegusa, T. Takashima, H. Funakubo, K. Akiyama and H. Irie, “Photocatalytic hydrogen evolution over β--iron silicide under infrared-light irradiation,” Chemical Communications 51.14 (2015) 2818-2820.

[135] S. Sen, N. Gogurla, P. Banerji, P. K. Guha and P. Pramanik, “Synthesis and characterization of β--phase iron silicide nano-particles by chemical reduction,” Materials Science and Engineering B (2015).

[136] S. Liang, R. Islam, D. J. Smith, P. A. Bennett, J. R. O′Brien and B. Taylor, “Magnetic iron silicide nanowires on Si (110),” Applied physics letters 88.11 (2006) 113111-113111.

[137] K. Yamamoto, H. Kohno, S. Takeda and S. Ichikawa, “Fabrication of iron silicide nanowires from nanowire templates,” Applied physics letters 89.8 (2006) 083107.

[138] A. L. Schmitt, M. J. Bierman, D. Schmeisser, F. J. Himpsel and S. Jin, “Synthesis and properties of single-crystal FeSi nanowires,” Nano letters 6.8 (2006) 1617-1621.

[139] S. Liang, X. Fang, T. L. Xia, Y. Qing and Z. X. Guo, “Self-assembled magnetic FeSi nanowire epitaxial heterojunctions by chemical vapor deposition,” The Journal of Physical Chemistry C 114.39 (2010) 16187-16190.

[140] S. Liang and B. A. Ashcroft, “Electrical characterization of epitaxial FeSi2 nanowire on Si (110) by conductive-atomic force microscopy,” Journal of Materials Research 25.02 (2010) 213-218.

[141] A. L. Schmitt, J. M. Higgins, J. R. Szczech and S. Jin, “Synthesis and applications of metal silicide nanowires,” Journal of Materials Chemistry 20.2 (2010) 223-235.

[142] T. Ootsuka, Z. Liu, M. Osamura, Y. Fukuzawa, N. Otogawa, Y. Nakayama and Y. Makita, “β-FeSi2 based metal-insulator-semiconductor devices formed by sputtering for optoelectronic applications,” Materials Science and Engineering B 124 (2005) 449-452.

[143] Y. Makita, T. Ootsuka, Y. Fukuzawa, N. Otogawa, H. Abe, Z. Liu and Y. Nakayama, “β-FeSi2 as a kankyo (environmentally friendly) semiconductor for solar cells in the space application,” Photonics Europe. International Society for Optics and Photonics (2006) 61970O-61970O-14.

指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2015-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明