參考文獻 |
1. Vertes, A., V. Hitchins, and K.S. Phillips, Analytical Challenges of Microbial Biofilms on Medical Devices. Analytical Chemistry, 2012. 84(9): p. 3858-3866.
2. Grainger, D.W., All charged up about implanted biomaterials. Nat Biotech, 2013. 31(6): p. 507-509.
3. Lichter, J.A., K.J. Van Vliet, and M.F. Rubner, Design of Antibacterial Surfaces and Interfaces: Polyelectrolyte Multilayers as a Multifunctional Platform. Macromolecules, 2009. 42(22): p. 8573-8586.
4. Banerjee, I., R.C. Pangule, and R.S. Kane, Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Advanced Materials, 2011. 23(6): p. 690-718.
5. Lin, P., et al., Improving biocompatibility by surface modification techniques on implantable bioelectronics. Biosensors and Bioelectronics, 2013. 47(0): p. 451-460.
6. Ostuni, E., et al., A Survey of Structure−Property Relationships of Surfaces that Resist the Adsorption of Protein. Langmuir, 2001. 17(18): p. 5605-5620.
7. Luk, Y.-Y., M. Kato, and M. Mrksich, Self-Assembled Monolayers of Alkanethiolates Presenting Mannitol Groups Are Inert to Protein Adsorption and Cell Attachment. Langmuir, 2000. 16(24): p. 9604-9608.
8. Chang, Y., et al., A Highly Stable Nonbiofouling Surface with Well-Packed Grafted Zwitterionic Polysulfobetaine for Plasma Protein Repulsion. Langmuir, 2008. 24(10): p. 5453-5458.
9. Chen, S., et al., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
10. Whitesides, G., Poly(ethylene glycol) chemistry biotechnical and biomedical applications J. Milton Harris, Ed. Applied Biochemistry and Biotechnology, 1993. 41(3): p. 233-234.
11. Abuchowski, A., et al., Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. Journal of Biological Chemistry, 1977. 252(11): p. 3582-6.
12. Basu, B. and S. Nath, Fundamentals of Biomaterials and Biocompatibility, in Advanced Biomaterials. 2010, John Wiley & Sons, Inc. p. 1-18.
13. Jo, S. and K. Park, Surface modification using silanated poly(ethylene glycol)s. Biomaterials, 2000. 21(6): p. 605-616.
14. Abuchowski, A., et al., Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. Journal of Biological Chemistry, 1977. 252(11): p. 3578-81.
15. Zhang, Z., et al., Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Glass Slides. Langmuir, 2006. 22(24): p. 10072-10077.
16. Leckband, D., S. Sheth, and A. Halperin, Grafted poly(ethylene oxide) brushes as nonfouling surface coatings. Journal of Biomaterials Science, Polymer Edition, 1999. 10(10): p. 1125-1147.
17. Finch, C.A., Poly(ethylene glycol) chemistry: Biotechnical and biomedical applications. Edited by J. Milton Harris. Plenum Publishing, New York, 1992. pp. xxi + 385, price $89.00. ISBN 0-306-44078-4. Polymer International, 1994. 33(1): p. 115-115.
18. Li, L., S. Chen, and S. Jiang, Protein interactions with oligo(ethylene glycol) (OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption. Journal of Biomaterials Science, Polymer Edition, 2007. 18(11): p. 1415-1427.
19. Estephan, Z.G., P.S. Schlenoff, and J.B. Schlenoff, Zwitteration As an Alternative to PEGylation. Langmuir, 2011. 27(11): p. 6794-6800.
20. Reece, J.B. and N.A. Campbell, Campbell biology / Jane B. Reece ... [et al.]. 2011, Boston: Benjamin Cummings : imprint of Pearson.
21. Vermette, P. and L. Meagher, Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms. Colloids and Surfaces B: Biointerfaces, 2003. 28(2–3): p. 153-198.
22. Lewis, A.L., Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B: Biointerfaces, 2000. 18(3–4): p. 261-275.
23. Holmlin, R.E., et al., Zwitterionic SAMs that Resist Nonspecific Adsorption of Protein from Aqueous Buffer. Langmuir, 2001. 17(9): p. 2841-2850.
24. Kane, R.S., P. Deschatelets, and G.M. Whitesides, Kosmotropes Form the Basis of Protein-Resistant Surfaces. Langmuir, 2003. 19(6): p. 2388-2391.
25. Zhang, Z., S. Chen, and S. Jiang, Dual-Functional Biomimetic Materials: Nonfouling Poly(carboxybetaine) with Active Functional Groups for Protein Immobilization. Biomacromolecules, 2006. 7(12): p. 3311-3315.
26. Schlenoff, J.B., Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir, 2014.
27. Love, J.C., et al., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews, 2005. 105(4): p. 1103-1170.
28. Nuzzo, R.G., L.H. Dubois, and D.L. Allara, Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers. Journal of the American Chemical Society, 1990. 112(2): p. 558-569.
29. Whitesides, G.M. and P.E. Laibinis, Wet chemical approaches to the characterization of organic surfaces: self-assembled monolayers, wetting, and the physical-organic chemistry of the solid-liquid interface. Langmuir, 1990. 6(1): p. 87-96.
30. Kao, W.-L., et al., Adsorption behavior of plasmid DNA on binary self-assembled monolayers modified gold substrates. Journal of Colloid and Interface Science, 2012. 382(1): p. 97-104.
31. Huang, C.-J., et al., Natural zwitterionic organosulfurs as surface ligands for antifouling and responsive properties. Biointerphases, 2014. 9(2): p. -.
32. Cohen-Atiya, M. and D. Mandler, Studying thiol adsorption on Au, Ag and Hg surfaces by potentiometric measurements. Journal of Electroanalytical Chemistry, 2003. 550–551(0): p. 267-276.
33. Ulman, A., An Introduction to Ultrathin Organic Films: From Langmuir--Blodgett to Self--Assembly. 2013: Academic press.
34. Bain, C.D., et al., Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. Journal of the American Chemical Society, 1989. 111(1): p. 321-335.
35. Schreiber, F., Structure and growth of self-assembling monolayers. Progress in Surface Science, 2000. 65(5–8): p. 151-257.
36. Lin, P., et al., Nonfouling Property of Zwitterionic Cysteine Surface. Langmuir, 2014. 30(22): p. 6497-6507.
37. Alswieleh, A.M., et al., Zwitterionic Poly(amino acid methacrylate) Brushes. Journal of the American Chemical Society, 2014. 136(26): p. 9404-9413.
38. Rosen, J.E. and F.X. Gu, Surface Functionalization of Silica Nanoparticles with Cysteine: A Low-Fouling Zwitterionic Surface. Langmuir, 2011. 27(17): p. 10507-10513.
39. Uvdal, K., P. Bodö, and B. Liedberg, l-cysteine adsorbed on gold and copper: An X-ray photoelectron spectroscopy study. Journal of Colloid and Interface Science, 1992. 149(1): p. 162-173.
40. Wang, H., et al., Improved Method for the Preparation of Carboxylic Acid and Amine Terminated Self-Assembled Monolayers of Alkanethiolates. Langmuir, 2005. 21(7): p. 2633-2636.
41. Lee, S.-H., et al., Photooxidation of Amine-Terminated Self-Assembled Monolayers on Gold. The Journal of Physical Chemistry C, 2010. 114(23): p. 10512-10519.
42. Yu, M.K., et al., Drug-Loaded Superparamagnetic Iron Oxide Nanoparticles for Combined Cancer Imaging and Therapy In Vivo. Angewandte Chemie International Edition, 2008. 47(29): p. 5362-5365.
43. Santra, S., et al., Synthesis and Characterization of Fluorescent, Radio-Opaque, and Paramagnetic Silica Nanoparticles for Multimodal Bioimaging Applications. Advanced Materials, 2005. 17(18): p. 2165-2169.
44. Lin, Y.-S., et al., Multifunctional Composite Nanoparticles: Magnetic, Luminescent, and Mesoporous. Chemistry of Materials, 2006. 18(22): p. 5170-5172.
45. Shanmugam, V., S. Selvakumar, and C.-S. Yeh, Near-infrared light-responsive nanomaterials in cancer therapeutics. Chemical Society Reviews, 2014. 43(17): p. 6254-6287.
46. Pombo Garcia, K., et al., Zwitterionic-coated "stealth" nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small, 2014. 10(13): p. 2516-29.
47. Vongsavat, V., et al., Ultrasmall Hollow Gold–Silver Nanoshells with Extinctions Strongly Red-Shifted to the Near-Infrared. ACS Applied Materials & Interfaces, 2011. 3(9): p. 3616-3624.
48. Jaque, D., et al., Nanoparticles for photothermal therapies. Nanoscale, 2014. 6(16): p. 9494-9530.
49. Weissleder, R., A clearer vision for in vivo imaging. Nat Biotech, 2001. 19(4): p. 316-317.
50. Schubert, M.P., COMBINATION OF THIOL ACIDS WITH METHYLGLYOXAL. Journal of Biological Chemistry, 1935. 111(3): p. 671-678.
51. Rogers, S.J., Composite pK′s of cysteine. Journal of Chemical Education, 1969. 46(4): p. 239.
52. Schoenfisch, M.H. and J.E. Pemberton, Air Stability of Alkanethiol Self-Assembled Monolayers on Silver and Gold Surfaces. Journal of the American Chemical Society, 1998. 120(18): p. 4502-4513.
53. Chang, Y., et al., Blood-Inert Surfaces via Ion-Pair Anchoring of Zwitterionic Copolymer Brushes in Human Whole Blood. Advanced Functional Materials, 2013. 23(9): p. 1100-1110.
54. Cukierman, E., R. Pankov, and K.M. Yamada, Cell interactions with three-dimensional matrices. Current Opinion in Cell Biology, 2002. 14(5): p. 633-640.
55. Espinoza, L., J.C. Hower, and S. Jiang, Influence of Salt and pH on the Adsorption of Fibrinogen and Lysozyme to Self-Assembled Monolayers Using a Surface Plasmon Resonance Sensor.
56. Li, L. and B. Li, Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Analyst, 2009. 134(7): p. 1361-1365.
57. Min, Y., et al., Self-assembled encapsulation of graphene oxide/Ag@AgCl as a Z-scheme photocatalytic system for pollutant removal. Journal of Materials Chemistry A, 2014. 2(5): p. 1294-1301.
58. Shao, Q. and S. Jiang, Influence of Charged Groups on the Properties of Zwitterionic Moieties: A Molecular Simulation Study. The Journal of Physical Chemistry B, 2014. 118(27): p. 7630-7637. |