博碩士論文 102331014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.149.241.32
姓名 朱思澔(Sz-Hau Chu)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 生物啟發兩性雙離子自組裝抗汙塗層
(Bio-inspired Zwitterionic Assemblies for Robust Antifouling Coatings)
相關論文
★ 可功能化抗沾黏性雙離子自組裝單層膜於生物感測器之應用★ 雙離子胺基酸吸附劑在血液中重金屬 吸附之應用
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 新型兩性磷脂類高分子聚合物與其自組裝奈米結構
★ 聚電解質和多價植酸之間向抗菌強韌水凝膠的離子絡合作用★ 磺基甜菜鹼基自組裝單分子層的形成、穩定性和抗污染性的比較研究
★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane
★ 開發可生物降解的完全磷酸膽鹼水凝膠★ Development of Functional Biointerface by Mixed Oligomeric Silatranes
★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry
★ Disulfide-based cross-linkers for functional polymeric networks★ 建立雙離子高分子修飾蛋白質技術與分析
★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 植入性醫療器材,由於長時間與血液、體液接觸,容易因為表面的蛋白質、微生物的非特異性吸附,進而引發儀器被組織包覆,效能、靈敏性受損,甚至造成凝血反應、微生物感染、血栓形成等問題。而目前的解決此問題的其中一項辦法為在醫療器材表面修飾一層抗貼附塗層以降低非特異性吸附,避免併發症的發生。其中以自組裝 (Self-Assembling)的修飾方法由於其步驟簡單、處理快速等特性尤為受到矚目。然而,也有許多學者認為,自組裝膜的表面穩定性與抗汙功效,會是其使用上的一大問題。
在本研究中,我們利用天然兩性雙離子氨基酸─半胱胺酸(Cysteine)、自行合成之半胱胺酸四級銨衍生物─半胱胺酸甜菜鹼(Cysteine betaine)和市面上常使用之親水性抗貼附材料─聚乙二醇(Polyethylene Glycol),自組裝於金基板上,利用水接觸角、X射線光電子能譜、掃描式隧道顯微鏡觀察修飾後表面的親水性質、表面元素組成及分子排列情形。並藉由細胞毒性試驗MTT、革蘭氏陽性菌表皮葡萄球菌(Staphylococcus epidermidis)和陰性菌綠膿桿菌(Pseudomonas aeruginosa)細菌貼附、3T3纖維母細胞貼附和蛋白質貼附,比較其化學穩定度、應用範圍及抗貼附能力。最後,將其修飾在空心金銀奈米殼(Hollow Ag@Au nanoshells) 上,調控溫度、鹽濃度、離子濃度、蛋白質貼附等變因,觀察其膠體穩定性並應用於近紅外光光熱治療。最後開發出一極具潛力之生物衍生兩性雙離子自組裝抗汙塗層。
摘要(英) Implantable medical devices are widely used in clinical medicine. However, they directly contact to blood or body fluid and nonspecific adsorption of protein or microorganisms may occur. This process will lead to decreased efficiency or sensitivity which further facilitates coagulation, infection or thrombus formation. Modification the surface of medical device with antifouling coatings may decrease the possibility of nonspecific adsorption and prevent formation of complications. Among them, modification by self-assembling is an easy and efficient way to improve the biocompatibility. Nevertheless, the stability and effectiveness of self-assembled monolayers (SAMs) is also an issue for long-term biomedical applications.
In this study, we used cysteine (natural sulfur-containing zwitterionic compounds), cysteine betaine (derivative of cycteine with quaternary ammonium group at its terminal end), and polyethylene glycol (a widely used hydrophilic antifouling material) to decorate with Au substrate through Au-thiol interaction. We arranged contact angle goniometer, X-ray photoelectron spectroscopy (XPS), and scanning tunneling microscope (STM) to examine the hydrophilic property, surface elemental composition and molecular arrangement situation in this study. MTT cytotoxicity assays, bacterial adsorption test, 3T3 fibroblast cel�#(~sorption, and protein adsorption were also arranged to compare the range of application and antifouling capacity. Finally, the modification was applied to hollow gold silver nanoshells. After regulating temperature, ion concentration, and protein adsorption, we tested the colloid stability. This technique then applied to near-infrared photoelectron thermal therapy and developed into bio-derived zwitterionic assemblies for antifouling coatings with high potential in clinical implications.
關鍵字(中) ★ 非特異性吸附
★ 自組裝薄膜
★ 兩性雙離子氨基酸
★ 光趨動氧化奈米材料
★ 光熱治療
關鍵字(英) ★ non-specific adsorption
★ self-assembled monolayers
★ zwitterionic amino acid
★ nanomaterials colloidal stability
★ photothermal therapy
★ photo induced oxidation
論文目次 目錄
中文摘要.................................................. v
Abstract...................................................vi
致謝 ......................................................viii
目錄 ......................................................ix
圖目錄 ....................................................xiii
表目錄 ....................................................xv
簡寫對照表 ................................................xvi
第一章 文獻回顧 ...........................................1
1-1 醫療器械、植入物的生物汙染 ............................1
1-1-1 異物反應(Foreign Body Response)......................1
1-1-2 微生物貼附...........................................2
1-2 抗生物沾黏材料 ........................................3
1-2-2 聚乙二醇材料 ........................................4
1-2-3 雙離子材料 ..........................................7
1-3 自組裝單分子膜 ........................................9
1-3-1 硫醇在金表面之自組裝單分子膜.........................10
1-3-2帶有硫醇分子的天然氨基酸兩性雙離子....................11
1-4 半胱胺酸應用於金表面修飾.............................. 13
1-5 半胱胺酸修飾於金表面所衍生之問題.......................15
1-5-1羧基和氨基尾端的硫醇分子自組裝改進方法 ...............16
1-5-2氨基於金表面上的光氧化情形............................20
1-6 奈米醫學 ..............................................22
1-6-1 金銀奈米殼(Hollow Gold Silver Nanoshells)............23
1-6-2 近紅外光光熱治療.....................................24
第二章 研究目的.... .......................................25
第三章 材料與方法 ...... ..................................26
3-1 實驗藥品...............................................26
3-2 實驗儀器...............................................27
3-3 材料合成 ..............................................28
3-3-1 胱胺酸的四級銨化 ....................................28
3-3-2 半胱胺酸甜菜鹼.......................................28
3-4 材料鑑定及表面分析.....................................29
3-4-1 半胱氨酸和半胱氨酸甜菜鹼的酸鹼滴定...................29
3-4-2 半胱氨酸、半胱氨酸甜菜鹼的毒性試驗 (MTT).............29
3-4-3 兩性雙離子半胱氨酸、半胱氨酸甜菜鹼、聚乙二醇的自組裝膜製備.........................................................30
3-4-4 兩性雙離子半胱胺酸甜菜鹼掃描式穿隧電子顯微鏡.........30
3-4-5 光氧化試驗...........................................31
3-4-6 水接觸角測量.........................................31
3-4-7 高解析電子能譜儀(XPS) 分析...........................31
3-4-8 細菌貼附試驗.........................................32
3-4-9 蛋白質貼附試驗.......................................32
3-4-10 細胞貼附試驗........................................33
3-5 金銀奈米殼之分析及應用.................................34
3-5-1 金銀奈米殼的表面修飾.................................34
3-5-2 光氧化後蛋白質貼附粒徑分析 ..........................35
3-5-3 長時間蛋白質貼附粒徑分析 ............................35
3-5-4 不同pH值蛋白質貼附粒徑分析 ..........................35
3-5-5 銅離子對於UV-VIS吸收光譜之影響.......................36
3-5-6 不同溫度、同一鹽濃度下對於UV-VIS吸收光譜之影響.......36
3-5-7 近紅外光雷射升溫試驗 ................................36
3-5-8 長時間近紅外光雷射升溫試驗...........................37
第四章 實驗結果 ...........................................38
4-1 兩性雙離子半胱氨酸及半胱氨酸甜菜鹼 ....................38
4-1-1 半胱胺酸甜菜鹼NMR頻譜分析 ...........................38
4-1-2 半胱胺酸甜菜鹼 ESI-MS高效能質譜儀分析 ...............40
4-1-3 酸鹼滴定.............................................41
4-1-4 半胱胺酸甜菜鹼STM表面形態分析........................42
4-1-5 MTT細胞毒性試驗......................................43
4-1-6 水接觸角.............................................43
4-1-7 XPS表面元素分析......................................44
4-1-8 光氧化後水接觸角.....................................46
4-1-9 光氧化後XPS 表面元素分析.............................48
4-1-10 半胱氨酸和半胱胺酸甜菜鹼的抗貼附性能................49
4-1-11 兩性雙離子於金銀奈米殼上的膠體穩定性................54
4-2 半胱胺酸甜菜鹼和硫醇聚乙二醇...........................59
4-2-1 水接觸角.............................................59
4-2-2 XPS 表面元素分析.....................................60
4-2-3 半胱胺酸甜菜鹼和硫醇聚乙二醇的抗貼附性能.............61
4-2-4 半胱胺酸甜菜鹼和硫醇聚乙二醇修飾於金銀奈米殼上的膠體穩定性.........................................................63
第五章 討論................................................67
5-1 半胱氨酸的光氧化效應及抗生物沾黏能力的喪失.............67
5-2 聚乙二醇於高鹽濃度、高溫之低耐受性.....................67
5-3 半胱胺酸甜菜鹼的優勢...................................68
5-3-1 pH值的高耐受性.......................................68
5-3-2 胺基光氧化效應的抑制.................................68
5-3-3 半胱胺酸甜菜鹼的抗生物沾黏能力.......................69
5-4 半胱氨酸、聚乙二醇、半胱胺酸甜菜鹼應用於光熱治療.......70
第六章 結論................................................72
第七章 未來展望............................................73
第八章 參考文獻 ...........................................74
參考文獻 1. Vertes, A., V. Hitchins, and K.S. Phillips, Analytical Challenges of Microbial Biofilms on Medical Devices. Analytical Chemistry, 2012. 84(9): p. 3858-3866.
2. Grainger, D.W., All charged up about implanted biomaterials. Nat Biotech, 2013. 31(6): p. 507-509.
3. Lichter, J.A., K.J. Van Vliet, and M.F. Rubner, Design of Antibacterial Surfaces and Interfaces: Polyelectrolyte Multilayers as a Multifunctional Platform. Macromolecules, 2009. 42(22): p. 8573-8586.
4. Banerjee, I., R.C. Pangule, and R.S. Kane, Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Advanced Materials, 2011. 23(6): p. 690-718.
5. Lin, P., et al., Improving biocompatibility by surface modification techniques on implantable bioelectronics. Biosensors and Bioelectronics, 2013. 47(0): p. 451-460.
6. Ostuni, E., et al., A Survey of Structure−Property Relationships of Surfaces that Resist the Adsorption of Protein. Langmuir, 2001. 17(18): p. 5605-5620.
7. Luk, Y.-Y., M. Kato, and M. Mrksich, Self-Assembled Monolayers of Alkanethiolates Presenting Mannitol Groups Are Inert to Protein Adsorption and Cell Attachment. Langmuir, 2000. 16(24): p. 9604-9608.
8. Chang, Y., et al., A Highly Stable Nonbiofouling Surface with Well-Packed Grafted Zwitterionic Polysulfobetaine for Plasma Protein Repulsion. Langmuir, 2008. 24(10): p. 5453-5458.
9. Chen, S., et al., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
10. Whitesides, G., Poly(ethylene glycol) chemistry biotechnical and biomedical applications J. Milton Harris, Ed. Applied Biochemistry and Biotechnology, 1993. 41(3): p. 233-234.
11. Abuchowski, A., et al., Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. Journal of Biological Chemistry, 1977. 252(11): p. 3582-6.
12. Basu, B. and S. Nath, Fundamentals of Biomaterials and Biocompatibility, in Advanced Biomaterials. 2010, John Wiley & Sons, Inc. p. 1-18.
13. Jo, S. and K. Park, Surface modification using silanated poly(ethylene glycol)s. Biomaterials, 2000. 21(6): p. 605-616.
14. Abuchowski, A., et al., Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. Journal of Biological Chemistry, 1977. 252(11): p. 3578-81.
15. Zhang, Z., et al., Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Glass Slides. Langmuir, 2006. 22(24): p. 10072-10077.
16. Leckband, D., S. Sheth, and A. Halperin, Grafted poly(ethylene oxide) brushes as nonfouling surface coatings. Journal of Biomaterials Science, Polymer Edition, 1999. 10(10): p. 1125-1147.
17. Finch, C.A., Poly(ethylene glycol) chemistry: Biotechnical and biomedical applications. Edited by J. Milton Harris. Plenum Publishing, New York, 1992. pp. xxi + 385, price $89.00. ISBN 0-306-44078-4. Polymer International, 1994. 33(1): p. 115-115.
18. Li, L., S. Chen, and S. Jiang, Protein interactions with oligo(ethylene glycol) (OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption. Journal of Biomaterials Science, Polymer Edition, 2007. 18(11): p. 1415-1427.
19. Estephan, Z.G., P.S. Schlenoff, and J.B. Schlenoff, Zwitteration As an Alternative to PEGylation. Langmuir, 2011. 27(11): p. 6794-6800.
20. Reece, J.B. and N.A. Campbell, Campbell biology / Jane B. Reece ... [et al.]. 2011, Boston: Benjamin Cummings : imprint of Pearson.
21. Vermette, P. and L. Meagher, Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms. Colloids and Surfaces B: Biointerfaces, 2003. 28(2–3): p. 153-198.
22. Lewis, A.L., Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B: Biointerfaces, 2000. 18(3–4): p. 261-275.
23. Holmlin, R.E., et al., Zwitterionic SAMs that Resist Nonspecific Adsorption of Protein from Aqueous Buffer. Langmuir, 2001. 17(9): p. 2841-2850.
24. Kane, R.S., P. Deschatelets, and G.M. Whitesides, Kosmotropes Form the Basis of Protein-Resistant Surfaces. Langmuir, 2003. 19(6): p. 2388-2391.
25. Zhang, Z., S. Chen, and S. Jiang, Dual-Functional Biomimetic Materials: Nonfouling Poly(carboxybetaine) with Active Functional Groups for Protein Immobilization. Biomacromolecules, 2006. 7(12): p. 3311-3315.
26. Schlenoff, J.B., Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir, 2014.
27. Love, J.C., et al., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews, 2005. 105(4): p. 1103-1170.
28. Nuzzo, R.G., L.H. Dubois, and D.L. Allara, Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers. Journal of the American Chemical Society, 1990. 112(2): p. 558-569.
29. Whitesides, G.M. and P.E. Laibinis, Wet chemical approaches to the characterization of organic surfaces: self-assembled monolayers, wetting, and the physical-organic chemistry of the solid-liquid interface. Langmuir, 1990. 6(1): p. 87-96.
30. Kao, W.-L., et al., Adsorption behavior of plasmid DNA on binary self-assembled monolayers modified gold substrates. Journal of Colloid and Interface Science, 2012. 382(1): p. 97-104.
31. Huang, C.-J., et al., Natural zwitterionic organosulfurs as surface ligands for antifouling and responsive properties. Biointerphases, 2014. 9(2): p. -.
32. Cohen-Atiya, M. and D. Mandler, Studying thiol adsorption on Au, Ag and Hg surfaces by potentiometric measurements. Journal of Electroanalytical Chemistry, 2003. 550–551(0): p. 267-276.
33. Ulman, A., An Introduction to Ultrathin Organic Films: From Langmuir--Blodgett to Self--Assembly. 2013: Academic press.
34. Bain, C.D., et al., Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. Journal of the American Chemical Society, 1989. 111(1): p. 321-335.
35. Schreiber, F., Structure and growth of self-assembling monolayers. Progress in Surface Science, 2000. 65(5–8): p. 151-257.
36. Lin, P., et al., Nonfouling Property of Zwitterionic Cysteine Surface. Langmuir, 2014. 30(22): p. 6497-6507.
37. Alswieleh, A.M., et al., Zwitterionic Poly(amino acid methacrylate) Brushes. Journal of the American Chemical Society, 2014. 136(26): p. 9404-9413.
38. Rosen, J.E. and F.X. Gu, Surface Functionalization of Silica Nanoparticles with Cysteine: A Low-Fouling Zwitterionic Surface. Langmuir, 2011. 27(17): p. 10507-10513.
39. Uvdal, K., P. Bodö, and B. Liedberg, l-cysteine adsorbed on gold and copper: An X-ray photoelectron spectroscopy study. Journal of Colloid and Interface Science, 1992. 149(1): p. 162-173.
40. Wang, H., et al., Improved Method for the Preparation of Carboxylic Acid and Amine Terminated Self-Assembled Monolayers of Alkanethiolates. Langmuir, 2005. 21(7): p. 2633-2636.
41. Lee, S.-H., et al., Photooxidation of Amine-Terminated Self-Assembled Monolayers on Gold. The Journal of Physical Chemistry C, 2010. 114(23): p. 10512-10519.
42. Yu, M.K., et al., Drug-Loaded Superparamagnetic Iron Oxide Nanoparticles for Combined Cancer Imaging and Therapy In Vivo. Angewandte Chemie International Edition, 2008. 47(29): p. 5362-5365.
43. Santra, S., et al., Synthesis and Characterization of Fluorescent, Radio-Opaque, and Paramagnetic Silica Nanoparticles for Multimodal Bioimaging Applications. Advanced Materials, 2005. 17(18): p. 2165-2169.
44. Lin, Y.-S., et al., Multifunctional Composite Nanoparticles: Magnetic, Luminescent, and Mesoporous. Chemistry of Materials, 2006. 18(22): p. 5170-5172.
45. Shanmugam, V., S. Selvakumar, and C.-S. Yeh, Near-infrared light-responsive nanomaterials in cancer therapeutics. Chemical Society Reviews, 2014. 43(17): p. 6254-6287.
46. Pombo Garcia, K., et al., Zwitterionic-coated "stealth" nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small, 2014. 10(13): p. 2516-29.
47. Vongsavat, V., et al., Ultrasmall Hollow Gold–Silver Nanoshells with Extinctions Strongly Red-Shifted to the Near-Infrared. ACS Applied Materials & Interfaces, 2011. 3(9): p. 3616-3624.
48. Jaque, D., et al., Nanoparticles for photothermal therapies. Nanoscale, 2014. 6(16): p. 9494-9530.
49. Weissleder, R., A clearer vision for in vivo imaging. Nat Biotech, 2001. 19(4): p. 316-317.
50. Schubert, M.P., COMBINATION OF THIOL ACIDS WITH METHYLGLYOXAL. Journal of Biological Chemistry, 1935. 111(3): p. 671-678.
51. Rogers, S.J., Composite pK′s of cysteine. Journal of Chemical Education, 1969. 46(4): p. 239.
52. Schoenfisch, M.H. and J.E. Pemberton, Air Stability of Alkanethiol Self-Assembled Monolayers on Silver and Gold Surfaces. Journal of the American Chemical Society, 1998. 120(18): p. 4502-4513.
53. Chang, Y., et al., Blood-Inert Surfaces via Ion-Pair Anchoring of Zwitterionic Copolymer Brushes in Human Whole Blood. Advanced Functional Materials, 2013. 23(9): p. 1100-1110.
54. Cukierman, E., R. Pankov, and K.M. Yamada, Cell interactions with three-dimensional matrices. Current Opinion in Cell Biology, 2002. 14(5): p. 633-640.
55. Espinoza, L., J.C. Hower, and S. Jiang, Influence of Salt and pH on the Adsorption of Fibrinogen and Lysozyme to Self-Assembled Monolayers Using a Surface Plasmon Resonance Sensor.
56. Li, L. and B. Li, Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Analyst, 2009. 134(7): p. 1361-1365.
57. Min, Y., et al., Self-assembled encapsulation of graphene oxide/Ag@AgCl as a Z-scheme photocatalytic system for pollutant removal. Journal of Materials Chemistry A, 2014. 2(5): p. 1294-1301.
58. Shao, Q. and S. Jiang, Influence of Charged Groups on the Properties of Zwitterionic Moieties: A Molecular Simulation Study. The Journal of Physical Chemistry B, 2014. 118(27): p. 7630-7637.
指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明