參考文獻 |
[1] S. Ciraci, and I. P. Batra, "Theory of the Quantum Size Effect in Simple Metals," Physical Review B 33 (1986) 4294-4297.
[2] Y. Liu, L. Zhong, Z. Peng, Y. Song, and W. Chen, "Field Emission Properties of One-Dimensional Single CuO Nanoneedle by in Situ Microscopy," Journal of Materials Science 45 (2010) 3791-3796.
[3] C. Wei, C. I. Wang, F. C. Tai, K. Ting, and R. C. Chang, "The Effect of CNT Content on the Surface and Mechanical Properties of CNTs Doped Diamond Like Carbon Films," Diamond and Related Materials 19 (2010) 562-566.
[4] J. Shirakashi, "Scanning Probe Microscope Lithography at the Micro-and Nano-Scales," Journal of Nanoscience and Nanotechnology 10 (2010) 4486-4494.
[5] T. Yasuda, S. Yamasaki, and S. Gwo. "Nanoscale Selective-Area Epitaxial Growth of Si Using an Ultrathin SiO2/Si3Ni4 Mask Patterned by an Atomic Force Microscope," Applied Physics Letters 77 (2000) 3917-3919.
[6] J. I. Martın, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, "Ordered Magnetic Nanostructures: Fabrication and Properties," Journal of Magnetism and Magnetic Materials 256 (2003) 449-501.
[7] A. J. Haes, C. L. Haynes, and R. P. Van Duyne, "Nanosphere Lithography: Self-Assembled Photonic and Magnetic Materials," Materials Research Society Symposium 636 (2001) D4.8.1-6.
[8] M. Ratner, and D. Ratner, "Nanotechnology: A Gentle Introduction to the Next Big Idea, " Prentice Hall Professional Chapter 4 (2003).
[9] E. Miyauchi, H. Arimoto, and H. Kitada, "Ion Species and Energy Control of Finely Focused RBs for Maskless in Situ Microfabrication Processes, " Nuclear Instruments and Methods B39 (1989) 515-520.
[10] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, "Nanosphere lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays," The Journal of Physical Chemistry B 103 (1999) 3854-3863.
[11] H. W. Deckman, and J. H. Dunsmuir, "Natural Lithography," Applied Physics Letters 41 (1982) 377-379.
[12] Y. B. Zheng, S. J. Wang, and Y. H. Wang, "Fabrication of Tunable Nanostructure Arrays Using Ion-Polishing-Assisted Nanosphere Lithography," Journal of Applied Physics 99 (2006) 034308.
[13] Z. Y. Ren, X. M. Zhang, J. J. Zhang, X. Li, and B. Yang, "Building Cavities in Microspheres and Nanospheres," Nanotechnology 20 (2009) 065305.
[14] M. J. Xu, N. Lu, H. B. Xu, D. P. Qi, Y. D. Wang, and L. F. Chi, "Fabrication of Functional Silver Nanobowl Arrays via Sphere Lithography," Langmuir 25 (2009) 11216-11220.
[15] E. Géraud, V. Prévot, J. Ghanbaja, and F. Leroux, "Macroscopically Ordered Hydrotalcite-Type Materials Using Self-Assembled Colloidal Crystal Template," Chemistry of Materials 18 (2006) 238-240.
[16] Y. Sun, and H. H. Wang, "High‐Performance, Flexible Hydrogen Sensors That Use Carbon Nanotubes Decorated with Palladium Nanoparticles," Advanced Materials 19 (2007) 2818-2823.
[17] H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, and L. Chi, "Broadband Antireflective Si Nanopillar Arrays Produced by Nanosphere Lithography," Microelectronic Engineering 86 (2009) 850-852.
[18] J. Y. Chyan, W. C. Hsu, and J. A. Yeh, "Broadband Antireflective Poly-Si Nanosponge for Thin Film Solar Cells," Optics Express 17 (2009) 4646-4651.
[19] M. Kostylevl, R. Magaraggia, F. Y. Ogrin, E. Sirotkin, V. F. Mescheryakov, N. Ross, and R. L. Stamps, "Ferromagnetic Resonance Investigation of Macroscopic Arrays of Magnetic Nanoelements Fabricated Using Polysterene Nanosphere Lithographic Mask Technique," IEEE Transactions on Magnetics 44 (2008) 2741-2744.
[20] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, "Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates," Langmuir 8 (1992) 3183-3190.
[21] R. Micheletto, H. Fukuda, and M. Ohtsu, "A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles," Langmuir 11 (1995) 3333-3336.
[22] T. P. Bigioni, X. M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, "Kinetically Driven Self Assembly of Highly Ordered Nanoparticle Monolayers." Nature Materials 5 (2006) 265-270.
[23] T. Ogi, L. B. Modesto-Lopez, F. Iskandar, and K. Okuyama, "Fabrication of a Large Area Monolayer of Silica Particles on a Sapphire Substrate by a Spin Coating Method," Colloids and Surfaces A: Physicochemical and Engineering Aspects 297 (2007) 71-78.
[24] J. C. Hulteen, and R. P. Van Duyne, "Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces," Journal of Vacuum Science & Technology A 13 (1995) 1553-1558.
[25] J. Chen, P. Dong, D. Di, C. Wang, H. Wang, J. Wang, and X. Wu, "Controllable Fabrication of 2D Colloidal-Crystal Films with Polystyrene Nanospheres of Various Diameters by Spin-Coating," Applied Surface Science 270 (2013) 6-15.
[26] W. C. Chiu, and B. Y. Tsui, "Investigation into the Performance of CNT-Interconnects by Spin Coating Technique," PROCEEDINGS OF THE 2013 IEEE 5TH INTERNATIONAL NANOELECTRONICS CONFERENCE (2013) 240-241.
[27] J. Rybczynski, U. Ebels, and M. Giersig, "Large-Scale, 2D Arrays of Magnetic Nanoparticles," Colloids and Surfaces A: Physicochemical and Engineering Aspects 219 (2003) 1-6.
[28] E. Sirotkin, J. D. Apweiler, and F. Y. Ogrin, "Macroscopic Ordering of Polystyrene Carboxylate-Modified Nanospheres Self-Assembled at the Water-Air Interface," Langmuir 26 (2010) 10677-10683.
[29] W. D. Ruan, Z. C. Lu, N. Ji, C. X. Wang, B. Zhao, and J. H. Zhang, "Facile Fabrication of Large Area Polystyrene Colloidal Crystal Monolayer via Surfactant-Free Langmuir-Blodgett Technique," Chemical Research in Chinese Universities 23 (2007) 712-714.
[30] Y. Guo, D. Tang, Y. Du, B. Liu, "Controlled Fabrication of Hexagonally Close-Packed Langmuir–Blodgett Silica Particulate Monolayers from Binary Surfactant and Solvent Systems," Langmuir 29 (2013) 2849-2858.
[31] R. Xie, and X. Y. Liu, "Electrically Directed On-Chip Reversible Patterning of Two-Dimensional Tunable Colloidal Structures," Advanced Functional Materials 18 (2008) 802-809.
[32] J. Pokki, O. Ergeneman, K. M. Sivaraman, B. Özkale, M. A. Zeeshan, T. Lühmann, B. J. Nelson, and S. Pané, "Electroplated Porous Polypyrrole Nanostructures Patterned by Colloidal Lithography for Drug-Delivery Applications," Nanoscale 4 (2012) 3083-3088.
[33] C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne, "Angle-Resolved Nanosphere Lithography: Manipulation of Nanoparticle Size, Shape, and Interparticle Spacing," The Journal of Physical Chemistry B 106 (2002) 1898-1902.
[34] A. Wellner, P. R. Preece, J. C. Fowler, and R. E. Palmer, "Fabrication of Ordered Arrays of Silicon Nanopillars in Silicon-On-Insulator Wafers," Microelectronic Engineering 57 (2001) 919-924.
[35] J. Rybczynski, D. Banerjee, A. Kosiorek, M. Giersig, and Z. F. Ren, "Formation of Super Arrays of Periodic Nanoparticles and Aligned ZnO Nanorods-Simulation and Experiments," Nano Letters 4 (2004) 2037-2040.
[36] H. J. Fan, B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A. Krost, and M. Zacharias, "Well-Ordered ZnO Nanowire Arrays on GaN Substrate Fabricated via Nanosphere Lithography," Journal of Crystal Growth 287 (2006) 34-38.
[37] J. Aizpurua, G. W. Bryant, P. Hanarp, D. S. Sutherland, M. Kall, and F. J. Garcia de Abajo, "Tunable Optical Excitations in Gold Nanorings," Physical Review Letters 90 (2003) 057401-1-4.
[38] Y. J. Ma, J. Cui, Y. L. Fan, Z. Y. Zhong, and Z. M. Jiang, "Ordered GeSi Nanorings Grown on Patterned Si (001) Substrates," Nanoscale Research Letters 6 (2011) 205-211.
[39] J. Liu, H. Dong, Y. Li, P. Zhan, M. Zhu, and Z. Wang, "A Facile Route to Synthesis of Ordered Arrays of Metal Nanoshells with a Controllable Morphology," Japanese Journal of Applied Physics 45 (2006) 582-584.
[40] X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, "Large-Scale Fabrication of Ordered Nanobowl Arrays," Nano Letters 4 (2004) 2223-2226.
[41] J. H. Lee, Y. W. Chung, M. H. Hon, and I. C. Leu, "Fabrication of Tunable Pore Size of Nickel Membranes by Electrodeposition on Colloidal Monolayer Template," Journal of Alloys and Compounds 509 (2011) 6528-6531.
[42] G. Duan, W. Cai, Y. Li, Z. Li, B. Cao, and Y. Luo, "Transferable Ordered Ni Hollow Sphere Arrays Induced by Electrodeposition on Colloidal Monolayer," The Journal of Physical Chemistry B110 (2006) 7184-7188.
[43] G. Duan, W. Cai, Y. Luo, Z. Li, and Y. Lei, "Hierarchical Structured Ni Nanoring and Hollow Sphere Arrays by Morphology Inheritance Based on Ordered Through-Pore Template and Electrodeposition," The Journal of Physical Chemistry B 110 (2006) 15729-15733.
[44] M. A. Ghanem, P. N. Bartlett, P. de Groot, and A. Zhukov, "A Double Templated Electrodeposition Method for the Fabrication of Arrays of Metal Nanodots," Electrochemistry Communications 6 (2004) 447-453.
[45] M. E. Kiziroglou, X. Li, D. C. Gonzalez, C. H. de Groot, A. A. Zhukov, P. A. J. de Groot, and P. N. Bartlett, "Orientation and Symmetry Control of Inverse Sphere Magnetic Nanoarrays by Guided Self-Assembly," Journal of Applied Physics 100 (2006) 113720-1-5.
[46] Y. W. Chung, I. C. Leu, J. H. Lee, J. H. Yen, and M. H. Hon, "Fabrication of Various Nickel Nanostructures by Manipulating the One-Step Electrodeposition Process," Journal of the Electrochemical Society 154 (2007) E77-E83.
[47] Z. Chen, P. Zhan, Z. L. Wang, J. H. Zhang, W. Y. Zhang, N. B. Ming, C. T. Chan, and P. Sheng, "Two‐and Three‐Dimensional Ordered Structures of Hollow Silver Spheres Prepared by Colloidal Crystal Templating," Advanced Materials 16 (2004) 417-422.
[48] K. Seeger, and R. E. Palmer, "Fabrication of Ordered Arrays of Silicon Nanopillars," Journal of Physics D: Applied Physics 32 (1999) L129.
[49] A. V. Whitney, B. D. Myers, and R. P. Van Duyne, "Sub-100 nm Triangular Nanopores Fabricated with the Reactive Ion Etching Variant of Nanosphere Lithography and Angle-Resolved Nanosphere Lithography," Nano Letters 4 (2004) 1507-1511.
[50] S. M. Weekes,.F. Y. Ogrin, and W. A. Murray, "Fabrication of Large-Area Ferromagnetic Arrays Using Etched Nanosphere Lithography," Langmuir 20 (2004) 11208-11212.
[51] C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, "Wafer-Scale Silicon Nanopillars and Nanocones by Langmuir–Blodgett Assembly and Etching," Applied Physics Letters 93 (2008) 133109.
[52] H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, and L. Chi, "Broadband Antireflective Si Nanopillar Arrays Produced by Nanosphere Lithography," Microelectronic Engineering 86 (2009) 850-852.
[53] C. W. Kuo, J. Y. Shiu, and P. Chen, "Size-and Shape-Controlled Fabrication of Large -Area Periodic Nanopillar Arrays," Chemistry of Materials 15 (2003) 2917-2920.
[54] X. Li, and P. W. Bohn, "Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon," Applied Physics Letters 77 (2000) 2572-2574.
[55] E. Garnett, and P. Yang, "Light Trapping in Silicon Nanowire Solar Cells," Nano Letters 10 (2010) 1082-1087.
[56] Y. Li, W. P. Cai, B. Cao, G. T. Duan, C. C. Li, F. Q. Sun, and H. B. Zeng, "Morphology -Controlled 2D Ordered Arrays by Heating-Induced Deformation of 2D Colloidal Monolayer," Journal of Materials Chemistry 16 (2006) 609-612.
[57] Y. Li, W. P. Cai, G. T. Duan, F. Q. Sun, B. Q. Cao, and F. Lu, "2D Nanoparticle Arrays by Partial Dissolution of Ordered Pore Films," Materials Letters 59 (2005) 276-279.
[58] Y. Li, W. P. Cai, G. T. Duan, B. Q. Cao, F. Q. Sun, and F. Lu, "Superhydrophobicity of 2D ZnO Ordered Pore Arrays Formed by Solution-Dipping Template Method," Journal of Colloid and Interface Science 287 (2005) 634–639.
[59] F. Q. Sun, W. P. Cai, Y. Li, B. Q. Cao, Y. Lei, and L. D. Zhang, "Morphology -Controlled Growth of Large-Area Two-Dimensional Ordered Pore Arrays," Advanced Functional Materials 14 (2004) 283-288.
[60] Y. Ohishi, K. Kurosaki, T. Suzuki, H. Muta, S. Yamanaka, N. Uchida, T. Tada, and T. Kanayama, "Synthesis of Silicon and Molybdenum–Silicide Nanocrystal Composite Films Having Low Thermal Conductivity," Thin Solid Films 534 (2013) 238-241.
[61] G. C.,Patil, and S. Qureshi, "A Comparative Study on Analog/RF Performance of Pt-Germanide and Pt-Silicide Schottky Barrier pMOSFETs," Electron Devices and Solid State Circuit IEEE (2012).
[62] J. Y. Huang, K. L. Yeo, A. Kumar, and C. S. Seet, "Impact of Surface Preparation on Ni (Pt) Silicide Oxidation," Electrochemical and Solid-State Letters 14 (2011) H42-H45.
[63] Y. K. Chae, Y. Egashira, Y. Shimogaki, K. Sugawara, H. Komiyama, "Experimental and Numerical Analysis of Rapid Reaction to Initiate the Radical Chain Reactions in WSix CVD," Thin Solid Films 320 (1998) 151-158.
[64] S. Zhou, X. H. Liu, Y. J. Lin, and D. W. Wang, "Rational Synthesis and Structural Characterizations of Complex TiSi2 Nanostructures," Chemistry of Materials 21 (2009) 1023-1027.
[65] K. Maex, G. Ghosh, L. Delaey, V. Probst, P. Lippens, L. Van den hove, and R. F. De Keersmaecker, "Stability of As and B Doped Si with Respect to Overlaying CoSi2 and TiSi2 Thin Films," Journal of Materials Research 4 (1989) 1209-1217.
[66] M. Sawada, H. Katsumata, Y. Tomokuni, and S. Uekusa, "Structural and Electrical Properties of Co-Doped β-FeSi2 Thin Films Prepared by RF Magnetron Sputtering," Physics Procedia 23 (2012) 9-12.
[67] M. H. Juang, Y. S. Peng, and B. J. Liu, "Formation of Microcrystalline-Si Thin Film Transistors by Using Self-Aligned Nickel-Silicided Process," Thin Solid Films 519 (2011) 3902-3905.
[68] A. Fleurence, G. Agnus, T. Maroutian, B. Bartenlian, and P. Beauvillain, "Au-Assisted Co Silicide Island Growth on Si (111)," Applied Surface Science 258 (2012) 9675-9679.
[69] M. L. Guo, X. H. Xia, Y. Gao, G. W. Jiang, Q. R. Deng, and G. S. Shao, "Self-Aligned TiO2 Thin Films with Remarkable Hydrogen Sensing Functionality," Sensors and Actuators B: Chemical 171 (2012) 165-171.
[70] K. L. Wang, T. C. Holloway, R. F Pinizzotto, Z. P. Sobczak, W. R. Hunter, and A. F. Tasch Jr, "Composite TiSi2/n+ Poly-Si Low-Resistivity Gate Electrode and Interconnect for VLSI Device Technology," IEEE Journal of Solid-State Circuits 17 (1982) 177-183.
[71] D. G. Choi, S. Kim, E. Lee, and S. M. Yang, "Particle Arrays with Patterned Pores by Nanomachining with Colloidal Masks," Journal of the American Chemical Society 127 (2005) 1636-1637.
[72] L. J. Chen, J. W. Mayer, and K. N. Tu, "Formation and Structure of Epitaxial Silicides on Silicon," Thin Solid Films 93 (1982) 135-141.
[73] B. Y. Tsui, and C. M. Lee, "Thermal Stability of Nickel Silicide and Shallow Junction Electrical Characteristics with Carbon Ion Implantation," Japanese Journal of Applied Physics 49 (2010) 04DA04.
[74] D. Z. Chi, "Semiconducting Beta-Phase FeSi2 for Light Emitting Diode Applications: Recent Developments, Challenges, and Solutions," Thin Solid Films 537 (2013) 1-22.
[75] M. C. Bost, and J. E. Mahan, "Optical Properties of Semiconducting Iron Disilicide Thin Films," Journal of Applied Physics 58 (1985) 2696-2703.
[76] T. D. Hunt, K. J. Reeson, K. P. Homewood, S. W. Teon, R. M. Gwilliam, and B. J. Sealy, "Optical Properties and Phase Transformations in α and β Iron Disilicide Layers," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 84 (1994) 168-171.
[77] S. Chu, T. Hirohada, M. Kuwabara, H. Kan, and T. Hiruma, "Time-Resolved 1.5 µm-Band Photoluminescence of Highly Oriented β-FeSi2 Films Prepared by Magnetron-Sputtering Deposition," Japanese Journal of Applied Physics 43 (2004) L127-L129.
[78] K. P. Homewood, K. J. Reeson, R. M. Gwilliam, A. K. Kewell, M. A. Lourenco, G. Shao, Y. L. Chen, J. S. Sharpe, C. N. McKinty, T. Butler, "Ion Beam Synthesized Silicides: Growth, Characterization and Devices," Thin Solid Films 381 (2001) 188-193.
[79] T. Suemasu, K. Takakura, C. Li, Y. Ozawa, Y. Kumagai, and F. Hasegawa, "Epitaxial Growth of Semiconducting β-FeSi2 and its Application to Light-Emitting Diodes," Thin Solid Films 461 (2004) 209-218.
[80] M. Takauji, C. Li, T. Suemasu, and F. Hasegawa, "Fabrication of p-Si/β-FeSi2/n-Si Double-Heterostructure Light-Emitting Diode by Molecular Beam Epitaxy." Japanese journal of applied physics 44.4S (2005): 2483.
[81] E. Belyaev, S. Mamylov, and O. Lomovsky, "Mechanochemical Synthesis and Properties of Thermoelectric Material β-FeSi2," Journal of Materials Science 35 (2000) 2029-2035.
|