![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:21 、訪客IP:3.129.209.87
姓名 侯玉汝(Hou,Yu-Ru) 查詢紙本館藏 畢業系所 統計研究所 論文名稱 以二元負二項模型推論生物對等性
(Using negative binomial model to make inference about bioequivalence)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
至系統瀏覽論文 ( 永不開放)
摘要(中) 兩藥品通過生物對等性檢定 (bioequivalence test) 後可稱之具生物對等性,一般假設藥物動力學 (pharmacokinetic) 資料服從對數常態分配 (log-normal distribution),經過對數轉換後,以二元常態分配 (bivariate normal distribution) 為模型作檢定。但二元常態分配模型參數較多,計算繁雜,因此本文提出以二元負二項分配 (bivariate negative binomial distribution) 為模型。相對於二元常態分配,負二項分配參數較少且容易計算。將此模型適當修正後可得一具強韌性的概似函數,在資料分配不知的情形下,可方便的分析成對的資料 (paired data),除可正確的估計參數外亦可得到正確的推論。 摘要(英) Only when the two drugs pass the bioequivalence test, can we claim that two drugs are bioequivalent. Usually, the distribution of the pharmacokinetic data is assumed to be log-normal and inference is made under normality with logarithmically transformed data. The number of parameters in bivariate normal model makes it less convenient to make inference about bioequivalence. We propose using the bivariate negative binomial model to test for bioequivalence. We can convert the bivariate negative binomial likelihood to become robust to accommodate general pharmacokinetic data whose distribution might be less understood. 關鍵字(中) ★ 強韌概似函數
★ 生物對等性檢定
★ 二元負二項模型
★ 二元常態模型
★ 成對資料關鍵字(英) ★ Robust likelihood function
★ bioequivalence test
★ bivariate negative binomial model
★ bivariate normal model
★ paired data論文目次 目錄
摘要 i
Abstract ii
致謝辭 iii
目錄 iv
圖目錄 vii
表目錄 viii
第一章 緒論 1
第二章 文獻回顧 4
2.1 兩個單邊檢定 4
2.2概似比檢定 5
2.3 概似方法 19
第三章 強韌化二元負二項模型 25
3.1 二元負二項模型 25
3.2 建立二元負二項模型之修正項 26
第四章 模擬研究 32
4.1 資料生成 32
4.2 模擬結果 35
第五章 實例分析 54
第六章 結論 57
參考文獻 58
附錄 60
參考文獻 參考文獻
[1] Guidance for Industry Food-Effect Bioavailability and Fed Bioequivalence Studies. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER), (2002).
[2] Schuirmann, D. J. (1987). A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. Journal of Pharmacokinetics and Biopharmaceutics, 15, 657–680.
[3] Westlake, W. J. (1972). Use of confidence intervals in analysis of comparative bioavailability trials. Journal of Pharmaceutics Sciences, 61, 1340-1341.
[4] Solis-Trapala, I. L., Farewell, V. T. (2005). Regression analysis of overdispersed correlated count data with subject specific covariates. Statistics in Medicine, 24, 2557-2575.
[5] Royall, R. M., Tsou, T. S. (2003). Interpreting statistical evidence using imperfect models: robust adjusted likelihood functions. Journal of the Royal Statistical Society, Series B, 65, 391–404.
[6] Xu, S., Hua, S. Y., Menton, R., Barker, K., Menon, S., D’Agostino, R. B. (2014). Inference of bioequivalence for log-normal distributed data with unspecified variances. Statistics in Medicine, 33, 2924–2938.
[7] Antonio, M ., Lorenzo, D. B., Antonio, R., Pierangelo, Z. (2002). Bioequivalence of ticlopidine hydrochloride administered in single dose to healthy volunteers. Pharmacological Research, 46, 401–407.
[8] Tsou, T. S. (2015). Robust likelihood inference for multivariate correlated count data. Comput Stat (to appear).
[9] Nadarajah, S., Gupta, A. K. (2006). Some bivariate gamma distributions. Applied Mathematics Letters, 19, 767–774.
指導教授 鄒宗山(Tsung-Shan Tsou) 審核日期 2015-7-29 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare