博碩士論文 102356024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.224.64.24
姓名 陳淑珍(shu-chen chen)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 探討柴油風化過程中其化學指紋圖譜與生物指標特徵因子受揮發作用所造成之影響
(Effect of Vaporization on Chemical Fingerprinting and Biomarkers of Diesel Fuel during the Weathering Process)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究旨在探討柴油其化學指紋及生物特徵因子受揮發作用之影響,藉此了解風化柴油的特徵因子比值,以作為柴油洩漏事件上的來源鑑識與判別之參考。研究使用台灣兩大柴油生產公司(中油公司與台塑公司)的產品,以純油相柴油或受柴油污染之土壤分別進行揮發實驗。純油相的揮發風化實驗結果顯示,由於油相的風化速度極為緩慢,在經過4個月的揮發與100小時的迴旋揮發的風化反應後,其總碳氫化合物(TPHs)所受的揮發作用影響有相似的降解模式,僅碳數低者較易受到影響,而C13以後之碳數幾乎不受影響,且在n-C17/Pr和n-C18/Ph與pristane/phytane (Pr/Ph)特徵因子比值亦呈現良好線性關係。另一方面,柴油污染土壤實驗結果顯示,經過3個月的風化後,開放系統之兩家市售柴油成分中Pr/Ph比值範圍介於0.13-0.20,並且柴油中直鏈烷損失較為明顯(影響至C16),因而影響到類異戊二烯(isoprenoids) 含量比,因此在柴油污染土壤實驗條件下,風化條件主要為揮發作用所主導,而風化程度僅屬於輕度風化。此外,本研究亦利用雙環類倍半萜烷(bicyclic sesquiterpanes)比值鑑識其柴油揮發結果,實驗結果發現,雖然中油公司或台塑公司市售柴油具有來源特性差異,但當風化作用影響至C16正烷烴時,不論是中油或台塑公司的柴油其雙環類倍半萜烷比值則無法適用。最後在分析Naphthalenes (萘系列化合物)、Fluorene (芴系列化合物)以及Phenanthrenes (菲系列化合物)之指紋圖譜,將特徵因子進行一致性評估後,結果顯示當風化作用尚未影響C11以前,其Naphthalenes、 Fluorene與Phenanthrenes之特徵因子比值均適用,但若影響至C16,則Naphthalenes與部分Fluorene系列化合物(輕質部分)則無法適用。整體而言,中油公司與台塑公司市售柴油受風化程度影響差異不大,可能為相同環境所承受之風化作用亦相同,而其中有部分的差異應為油品特性所導致。即便如此,從本研究的結果亦可得知,當油品受風化作用時,環狀脂肪烴(Cyclic Aliphatic Hydrocarbons) 和芳香烴(Aromatic Hydrocarbons)的抗風化能力明顯大於正烷烴,當風化作用影響至C16正烷烴時,則雙環類倍半萜烷與多環芳香烴中的萘系列將無法提供特徵因子比值,因此在漏油污染鑑識/評估時,如果能先確認其風化作用影響程度,則可提高判識的準確性。
摘要(英) The purpose of this study is to understand the effect of vaporization on the changes of diesel-chemical fingerprinting and associated biomarkers during weathering processes. In the meantime, the diagnostic ratios of difference weathered diesel-produces were also investigated for their applicability in the characterization and source identification of spilled diesel. Vaporization tests were conducted on pure-phase diesel and diesel-contaminated soil using diesel fuel obtained from CPC Corporation, Taiwan (CPC) and Formosa Petrochemical Corporation (FPCC), respectively. Results from the pure-phase diesel experiments indicated that diesel was slightly weathered after 4-month vaporization or 100-day rotation vaporization. Both brands had similar degradation patterns of total petroleum hydrocarbons (TPHs) after vaporization, showing that only carbons less than C13 were impacted and carbons raging over C13 were nearly uninfluenced. Further, significantly linear relationships were observed between the diagnostic ratios of n-C17 to Pr (n-C17/Pr), n-C18 to Ph (n-C18/Ph), and pristine to phytane (Pr/Ph). On the other hand, results from experiments of diesel-contaminated soils after 3-month weathering revealed that for both brands, the Pr/Ph ratio ranged from 0.13 to 0.20 on the open system, and significant depletion of n-alkanes diesel (carbon ranged to C16) occurred, thus influencing the content of isoprenoids. Apparently, vaporization was the key factor of weathering conditions in the diesel-contaminated soil experiments, but caused a minor effect on pure-phase diesel weathering.
In summary, the overall differences of weathering diesel from either CPC or FPCC were not significantly due to the similarly wreathing conditions were conducted, and the partial difference from the experiment results were possible caused by the original source characteristics. The study results clearly indicated that the cyclic aliphatic hydrocarbons and aromatic hydrocarbons were much more resistance to the weathering conditions than the n-alkanes. When the weathering processes has an influence on n-alkanes C16, the diagnostic ratio of bicyclic sesquiterpanes and the naphthalenes of polycyclic aromatic hydrocarbons were not provide as a good biomarker. Consequently, the well evaluation of the weathering extent in the oil spilled cases is helpful to increase the accuracy of source identification and characterization.
關鍵字(中) ★ 生物標誌物
★ 特徵因子比值
★ 化學指紋
★ 揮發
★ 風化
關鍵字(英) ★ Boimarkers
★ Diagnostic Ratio
★ Chemical fingerprinting
★ Volatile
★ weathered
論文目次 致 謝
摘 要
Abstract
目 錄 .....................................................................................................................i
圖 目 錄 ............................................................................................................v
表 目 錄 ..........................................................................................................vii
第 一 章 、研究緣起與目的..............................................................................1
1.1 研究緣起...............................................................................................1
1.2 研究目的...............................................................................................3
第 二 章 、文獻回顧..........................................................................................5
2.1 石油特性...............................................................................................5
2.1.1 直鏈和支鏈脂肪烴........................................................................6
2.1.2 環狀脂肪烴 ....................................................................................8
2.1.3 芳香烴 ............................................................................................8
2.2 油品分類...............................................................................................9
2.3 我國漏油污染事件.............................................................................11
2.4 油品風化作用.....................................................................................13
2.5 生物標誌物(Biomarkers) ...................................................................13
2.5.1 類萜烷 ..........................................................................................14
2.5.2 類固烷 ..........................................................................................15
2.6 常用生物指標特徵因子比值.............................................................16
2.7 柴油極端條件下受揮發作用之風化效應探討.................................19
第 三 章 、研究方法........................................................................................21
3.1 研究流程.............................................................................................21
3.2 實驗方法.............................................................................................22
3.3 實驗步驟.............................................................................................23
3.3.1 柴油揮發實驗 ..............................................................................23
3.3.2 柴油迴旋揮發實驗......................................................................26
3.3.3 柴油污染土壤揮發實驗..............................................................27
3.4 分析方法.............................................................................................29
3.4.1 純油相樣品前處理......................................................................29
3.4.2 土壤樣品前處理..........................................................................29
3.4.3 柴油指紋圖譜分析......................................................................30
3.4.4 氣相層析質譜儀分析設定(GC/MS)...........................................35
第 四 章 、結果與討論....................................................................................37
4.1 柴油揮發作用結果.............................................................................37
4.1.1 化學指紋圖譜變化/柴油總碳氫化合物(正烷烴、異戊間二烯)
.....................................................................................................37
4.1.2 化學指紋圖譜變化/柴油生物標誌物(雙環類倍半萜烷) ..........40
4.1.3 化學指紋圖譜變化/柴油烷基化多環芳香烴(萘、芴、菲化合物)
.....................................................................................................41
4.1.4 特徵因子診斷比值......................................................................42
4.2 柴油迴旋揮發作用結果.....................................................................45
4.2.1 化學指紋圖譜變化/柴油總碳氫化合物(正烷烴、異戊間二烯)
.....................................................................................................46
4.2.2 化學指紋圖譜變化/柴油生物標誌物(雙環類倍半萜烷) ..........49
4.2.3 化學指紋圖譜變化/柴油烷基化多環芳香烴(萘、芴、菲化合物)
.....................................................................................................50
4.2.4 特徵因子診斷比值......................................................................51
4.3 柴油污染土壤表面風化效應結果.....................................................53
4.3.1 化學指紋圖譜變化/柴油總碳氫化合物(正烷烴、異戊間二烯)
.....................................................................................................53
4.3.2 化學指紋圖譜變化/柴油生物標誌物(雙環類倍半萜烷) ..........59
4.3.3 化學指紋圖譜變化/柴油烷基化多環芳香烴(萘、芴、菲化合物)
.....................................................................................................62
4.3.4 特徵因子診斷比值......................................................................65
4.4 柴油揮發作用對柴油化學指紋變化之討論.....................................72
第 五 章 、結論與建議....................................................................................77
5.1 結論.....................................................................................................77
5.2 建議.....................................................................................................78
參考文獻 ..............................................................................................................81
參考文獻 Douglas, G.S., Emsbo M., S., Stout, S.S., Uhler, A.D., McCarthy, K.J., Chemical Fingerprinting Methods, In: Murphy, B.L. and Morrison, R.D. (Eds.), Introduction to Environmental Forensics, Academic Press, New Youk. (2007)
Ezra, S., Feinstein, S., Pelly, I., Bauman, D., and Miloslavsky, I., “Weathering of fuel oil on the east Mediterranean coast, Ashdod, Israel”, Organic Geochemistry 31, 1733–1741, 2000
Faksness, L.V., Weiss, H. M. and Daling, P. S., "Revision of the Nordtest Methodology for Oil Spill Identification", SINTEF Applied Chemistry, NORWAY. (2002)
Fan, P., Philp, R. P., Li, Z., Yu, X., Ying, G., “ Biomarker distributions in Crude Oils and Source Rocks from Different Sedimentary Environments” Chem, Geol., 93, 61-78 (1991)
Kaplan, I.R., Galperin, Y., Lu, S.T., Lee, R.P., Forensic Environmental Geochemistry: Differentiation of Fuel-types, Their Sources and Release Time, Organic Geochemistry, 27 (5-6), 289-299 (1997).
Kuo, A.F., Wu, S.H., Wang, S.K. and Wong,Y.M., “Investigation over the Liability for the Oil Spoll in An Oil Leakage Accident in the North Sea Territory of Taiwan” 2009 international Network of Environmental Forensics Conference (2009)
Mackenzie, A.S., Brassell, S.C., Eglinton, G., Maxwell, J.R., Chemical Fossils: the Geological Fate of Steroids, Science, 217 (4557), 491-504 (1982)
Peters, K.E., Walters, C.C., Moldowan, J. M., “The Biomarker Guide, Volume 1: Biomarkers and Isotopes in the Environment and Human History”, Cambridge University Press, New York (2005)
Shi, J. , Xiang, M. , Hong, Z. , Lin, S. , Zhou, Q., “Source and Evolution of De-A-Lupenes and Some Pentacyclic Triterpanoids ” 沉積學報(1997)
Tissot, B.P, Weldt, D.H., Petroleum Formation and Occurrence, 2nd Edition, Springer-Verlag, New York, 393-408 (1984)
Van A., B.G.K., Bastow, T.P., Alexander, R., Kagi, R.I., Distributions of Methylated Naphthalenes in Crude Oils: Indicators of Maturity, Biodegradation and Mixing, Organic Geochemistry, 30 (10), 1213-1227 (1999)
Wang, Z., and Fingas M., Development of oil hydrocarbon fingerprinting and identification techniques, Marine pollution Bulletin 47,423-452,2003
Wang, Z., Yang, C., Hollebone, B., Fingas, M., Forensic Fingerprinting of Diamondoids for Correlation and Differentiation of Spilled Oil and Petroleum Products, Environmental Science and Technology, 40 (18), 5636-5646 (2006)
Wang, Z., Yang, C., Fingas, M., Hollebone, B., Yim, U.H. Oh, J.R., Petroleum Biomarker Fingerprinting for Oil Spill Characterization and Source Identification, In: Wang, Z. and Stout, S. (Eds.), Oil Spill Environmental Forensics Fingerprinting and Source Identification, Academic Press, Boston (2007)
Yang, C., Wang, Z., Hollebone, B., Brown, C.E., and Landriault, M., “Characteristics of bicyclic sesquiterpanes in crude oils and petroleum products” , Journal of Chromatography A, 1216, 4475-4484 (2009)
Mohamad, P. Z., Horinouchi, A., Shinobu, T., Takada, H., Tanabe, S., and Ismail, A.,“Oil pollutions in the straits of Malacca, Malaysia: Application of molecular markers for source identification”, Environ. Sci. Technol. 34, 1189–1196 (2000)
吳素慧、沈俊卿,「類倍半萜烷指紋分析在柴油漏油污染研究上之應用研究」,台灣石油地質,第36期,第203~214頁(2003a)。
吳素慧、沈俊卿、郭振隆,「某一柴油漏油污染場址類倍半萜烷與烷基菲化合物GCMSSIM指紋分析研究」,92年度環境分析化學年會(2003b)。
吳素慧、高振山、吳姿燕、楊宗翰、陳美華,「海域油污染生物指標檢測技術建立(1/2)」,台灣中油公司探採研究所,行政院環保署環境檢驗所委辦專案研究計畫報告,EPA-97-E3S4-02-03 (2008)。
吳素慧、高振山、吳姿燕、楊宗翰、陳美華,「海域油污染生物指標檢測技術建立(2/2)」,台灣中油公司探採研究所,行政院環保署環境檢驗所委辦專案研究計畫報告,EPA-98-E3S4-02-04 (2009)。
吳素慧、洪瑋濃、吳姿燕、高振山、楊宗翰、陳美華,「運用統計方法探討生物指標適用於海域油污染鑑識技術之特徵因子比值 以巴拿馬籍晨曦號漏油為例」,第25屆環境分析化學研討會,2011年5月13~14日,中壢(2011)。
宋明一、劉文堯、范康登,「環境法醫技術應用於土壤及地下水污染源鑑定及案例初探」,財團法人台灣土壤及地下水環境保護協會簡訊,第26期,第3~14頁,台北(2007)。
李芳胤、陳世賢,「土壤分析手冊」初版,新文京開發,2007。
林國安、紀文榮、胡錦城、郭正隆、吳素慧、林麗華、沈俊卿,「石油探採(第一冊)-生油岩之油氣岩比對」,中國石油股份有限公司訓練教材叢書,第212-240頁(2003)。
孫培艷、高鎮會、崔文林,「油指紋鑒別技術發展與應用」,海洋出版社,北京(2007)。
陳美華,「油污染鑑識生物指標技術應用研究-檢測流程與統計分析之應用與探討」,碩士論文,國立聯合大學環境與安全衛生工程學系,苗栗(2011)。
黃冠穎、黃聰正,火眼金睛專業海巡韓輪排污無所遁形,海巡雙月刊 Vol.42 (2009 )。
黃德坤、陳大麟、林舜隆、羅文杰,「環境法醫技術應用在油污染源之鑑定」,工業污染防治,第91期,第23~41頁(2004)。
蔡依珊,「揮發作用對油品化學指紋與特徵因子比值影響之探討」,碩士論文,國立聯合大學環境與安全衛生工程學系,苗栗(2012)。
蕭慕俊「布拉格油輪」事件─談台灣首宗巨大油輪污染,經濟部能源局 2005年11月能源報導 P25。
指導教授 林居慶(chu-ching Lin) 審核日期 2015-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明