國立中央大學105學年度碩士班考試入學試題

所別: 太空科學研究所碩士班 不分組(一般生)

共2頁 第1頁

太空科學研究所碩士班 不分組(在職生)

科目:

太空物理學

本科考試禁用計算器

*請在答案卷(卡)內作答

Space Physics: Magnetosphere (50 points)

1.(a) Please explain the existence of equilibrium plasma sheet based on the particle drift motion and MHD momentum equation, respectively. (b) If a particle initially locates at 9 R_E on the equatorial plane with pitch angle of 90° and 2 keV energy, please determine a particle's energy when it moves earthward to 5 R_E on the equatorial plane by assuming that the Earth's magnetic field is a dipole field and using the adiabatic invariants. (25 points)

2.Under the ideal MHD condition, please (a) illustrate the properties in the low-beta and high-beta plasma, (b) write down the Ohm's law and explain the physical meanings. (25 points)

注:背面有試題

國立中央大學 105 學年度碩士班考試入學試題

所別: 太空科學研究所碩士班 不分組(一般生)

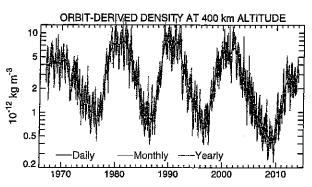
共2頁 第2頁

太空科學研究所 碩士班 不分組(在職生)

科目: 太空物理學

本科考試禁用計算器

*請在答案卷(卡)內作答


Graduate School Entrance Exam: Space Physics (Ionosphere)

50 points total. Show all calculations and explain your answers. Answers in English or Chinese are both acceptable.

Useful Hints:

Vector Triple Product: $\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B})$

 (25 points, Neutral Density / Solar Cycle) The following figure shows global average neutral atmospheric density measured at 400 km altitude by satellites in Low Earth Orbit from 1967 – 2013.

Answer the following questions:

- a) (7 points) How does the neutral density at 400 km vary interannually? Explain the physical mechanism driving this variation.
- b) (10 points) In addition to the neutral density at 400 km (ρ_{400}), the neutral density is also measured at 450 km (ρ_{450}). Derive a mathematical model for the average temperature between 400 and 450 km (\bar{T}), making use of ρ_{400} and ρ_{450} . What assumptions does this model make?
- c) (8 points) Using the neutral density data in the figure, do you expect the ionospheric total electron content (TEC) to be higher in 2000 or 2010? Why? Name at least two reasons.
- 4. (25 points) Answer the following questions regarding particle motion:
 - a) (7 points) Assume a single particle with charge q in the presence of an electric field \vec{E} , magnetic field \vec{B} , and gravitational acceleration \vec{g} . The particle velocity is \vec{v} . Write the vector equation of motion (Newton's 2^{nd} Law) for this particle.
 - b) (8 points) Assume a Cartesian coordinate system where the z-axis points upwards, while the x and y axes are in the horizontal directions. From part a), let the magnetic field be $\vec{B} = B\hat{k}$, and the gravitational acceleration be $\vec{g} = -g\hat{k}$. Would this situation correspond to the Earth's polar regions, mid-latitudes, or equatorial region? Is this the northern or southern hemisphere? Why?
 - c) (10 points) Solve for the steady-state velocity $\vec{v} = v_x \hat{\imath} + v_y \hat{\jmath} + v_z \hat{k}$ of this charged particle using the magnetic and gravitational field directions from Part b). Let the electric field $\vec{E} = E_x \hat{\imath} + E_y \hat{\jmath}$. What are the values of v_x , v_y , and v_z ?

注:背面有試題