博碩士論文 962206013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.222.21.218
姓名 林聖富(Sheng-Fu Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 核酸適合體式光學波導共振生物感測器於凝血酶之檢測
(Application of Aptasensor by Using Guided Mode Resonance for Thrombin Detection)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究在研發一新型核酸適合體式生物感應器(aptasensor)。隨著科技的進步,衛生醫療保健的觀念越來越受到大家的注意,其中預防醫學的觀念也越來越普及。檢測微量生物指標(biomarker)有助於疾病的早期發現與早期治療,而生物感測器在此扮演很重要的角色。除了疾病的檢測之外,更可將檢測器用於監控環境或戰場運用,固有必要發展生物感測器。本研究之感測器結合光學波導共振元件與核酸適合體。波導共振元件(guided mode resonance device)做為生物感測器中的訊號換能元件(transducer),而核酸適合體(aptamer)為辨識元件(recognize element)。核酸適合體於生物檢測中有需多的優點,除了對檢測物有專一的鍵結能力(specific binding),此分子為人工合成之序列、研發期相對於一般抗體短、易於修飾且不影響與待測物的親和力、對應之檢測物廣與保存容易等優點。綜合以上辨識元件的優點再搭配上波導共振元件在生物檢測上的優勢,這將成為深具潛力的生物感測器。
於本研究中我們已經成功的將核酸適合體固定於波導共振元件之表面,並且將檢測系統雜訊降低到 0.006 nm 的波長偏移量,等效檢測極限為 8.57*10-5 的折射率變化。於實驗中成功即時檢測不同濃度之凝血酶,檢測範圍從 0.25 microM 到1.5 microM 之濃度與其訊號飄移量呈線性關係。從即時檢測的資料中可提供動力學資訊,親和力常數(affinity constant)Ka 皆介於 10-6 的等級,最後此生物晶片達到可重複性使用與重現性的目標。
摘要(英) In this thesis we develop a novel biosensor which combines aptamer and guided mode resonance device which is called aptasensor. As the technology improving, the life quality of humankind also improves, and people takes more concerned with the hygiene. In this generation, preventive medicine is popularizing, and many studies show some disease or cancer which will release some special biomarker before onset, so biosensors play an important role here. If we could detect the trace biomarker early, we have more opportunity to cure the diseases. Besides, biosensors are also applied to health care, monitoring environment, biomedical research or battle field. So developing biosensor is very important.
Basically biosensors have two parts, one is the recognizing element and the other is the transducer. In this thesis we use the aptamer to be the recognizing part (immobilize molecular) and optical guided mode resonance (GMR) device to be the transducer. Aptamer have high specific binding to ligands, and aptamer is a DNA or RNA fragment which can be synthesized in vitro. According to GMR’s special and designable sensitivity to surface detect and many potential advantages, so we apply it to biosensor.
In the long run of this research, we achieve the thrombin sensing in concentration from 0.25 microM to 1.5 microM, the noise in our system is around 0.06 nm, limit of detection (LOD) is 8.57*10-5 RIU. Finally the kinetics from our real time experiment results is gotten, the affinity constant (Ka) is around order.
關鍵字(中) ★ 凝血酶
★ 生物感測器
★ 核酸適合體
★ 波導共振
關鍵字(英) ★ biosensor
★ aptamer
★ guided mode resonance
★ thrombin
論文目次 論文電子檔授權書 ..................................................................................................................... i
論文指導教授推薦書 ................................................................................................................ ii
論文口試委員審定書 ............................................................................................................... iii
摘要 .......................................................................................................................................... iv
Abstract ..................................................................................................................................... vi
致謝 ......................................................................................................................................... vii
目錄 ........................................................................................................................................ viii
圖目錄 ....................................................................................................................................... x
表目錄 ..................................................................................................................................... xii
第一章 序論 ............................................................................................................................ 1
1-1 生物感測器 ................................................................................................................ 2
1-2 光學式波導共振元件 Guided mode resonance 應用於生物感測.......................... 5
1-3 核酸適合體 Aptamer 應用於生物感測 .................................................................. 8
1-4 凝血酶簡介 .............................................................................................................. 13
1-5 抗凝血酶核酸適合體 Thrombin binding aptamer ................................................. 15
1-6 研究動機 .................................................................................................................. 16
第二章 波導共振元件 Guided mode resonance device ................................................... 17
2-1 波導共振元件理論 .................................................................................................. 18
2-1.1 光波導原理 ........................................................................................................ 18
2-1.2 繞射光柵原理 .................................................................................................... 20
2-1.3 波導共振基本原理 ............................................................................................ 22
2-2 波導共振元件之設計與模擬 .................................................................................. 25
第三章 製程、實驗與量測 .................................................................................................. 32
3-1 波導共振元件製作與微流道系統 .......................................................................... 33
3-1.1 波導共振元件之製作 ........................................................................................ 33
3-1.2 微流道系統: .................................................................................................... 34
3-2 實驗儀器與藥品 ...................................................................................................... 37
3-2.1 晶片製作: ........................................................................................................ 37
3-2.2 表面改質: ........................................................................................................ 38
3-2.3 後端量測: ........................................................................................................ 39
3-3 實驗步驟 .................................................................................................................. 41
3-3.1 表面改質: ........................................................................................................ 41
3-3.2 流體即時檢測: ................................................................................................ 43
第四章 實驗結果與討論 ...................................................................................................... 45
4-1 晶片製作 .................................................................................................................. 46
4-2 表面改質 .................................................................................................................. 51
4-3 酒精實驗 .................................................................................................................. 54
4-4 凝血酶檢測實驗 ...................................................................................................... 55
4-5 討論 .......................................................................................................................... 65
第五章 結論與未來展望 ...................................................................................................... 70
5-1 結論 .......................................................................................................................... 71
5-2 未來展望 .................................................................................................................. 72
第六章 參考文獻 .................................................................................................................. 73
參考文獻 [1
] M. Mehrvar, C. Bis, J. M. Scharer, M. Moo-Young, and J. H. Luong, "Fiber-optic biosensors - Trends and advances," Analytical Sciences 16, 677-692 (2000).
[2
] B. Mizaikoff, R. Gobel, R. Krska, K. Taga, R. Kellner, M. Tacke, and A. Katzir, "Infrared Fiberoptic Chemical Sensors with Reactive Surface-Coatings," Sensors and Actuators B-Chemical 29, 58-63 (1995).
[3
] M. Belz, W. J. O. Boyle, K. F. Klein, and K. T. V. Grattan, "Smart-sensor approach for a fibre-optic-based residual chlorine monitor," Sensors and Actuators B-Chemical 39, 380-385 (1997).
[4]
J. H. Lee, K. H. Yoon, K. S. Hwang, J. Park, S. Ahn, and T. S. Kim, "Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein," Biosensors & Bioelectronics 20, 269-275 (2004).
[5]
Y. S. Lee, D. S. Yoon, and T. S. Kim, "Improvement of the mass sensitivity in flexural plate wave biosensor based on PZT thin film," Integrated Ferroelectrics 69, 391- (2005).
[6]
G. Y. Kang, G. Y. Han, J. Y. Kang, I. H. Cho, H. H. Park, S. H. Paek, and T. S. Kim, "Label-free protein assay with site-directly immobilized antibody using self-actuating PZT cantilever," Sensors and Actuators B-Chemical 117, 332-338 (2006).
[7]
F. Sevilla, T. Kullick, and T. Scheper, "A Bio-Fet Sensor for Lactose Based on Co-Immobilized Beta-Galactosidase Glucose-Dehydrogenase," Biosensors & Bioelectronics 9, 275-281 (1994).
[8]
A. N. Reshetilov, M. V. Donova, D. V. Dovbnya, A. M. Boronin, T. D. Leathers, and R. V. Greene, "FET-microbial sensor for xylose detection based on Gluconobacter oxydans cells," Biosensors & Bioelectronics 11, 401-408 (1996).
[9]
A. Vijayalakshmi, Y. Tarunashree, B. Baruwati, S. V. Manorama, B. L. Narayana, R. E. C. Johnson, and N. M. Rao, "Enzyme field effect transistor (ENFET) for estimation of triglycerides using magnetic nanoparticles," Biosensors & Bioelectronics 23, 1708-1714 (2008).
[10
] J. Kondoh, and S. Shiokawa, "Measurements of Conductivity and Ph of Liquid Using Surface Acoustic-Wave Devices," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 31, 82-84 (1992).
[11
] K. Lange, F. Bender, A. Voigt, H. Gao, and M. Rapp, "A surface acoustic wave biosensor concept with low flow cell volumes for label-free detection," Analytical Chemistry 75, 5561-5566 (2003).
[12
] M. Perpeet, S. Glass, T. Gronewold, A. Kiwitz, A. Malave, I. Stoyanov, M. Tewes, and E. Quandt, "SAW sensor system for marker-free molecular interaction analysis," Analytical Letters 39, 1747-1757 (2006).
[13
] B. J. Jeon, and J. C. Pyun, "Reconstruction of the Immunoaffinity Layer of SPR Biosensor by Using Proteolytic Enzyme," Biochip Journal 2, 269-273 (2008).
[14]
M. Bora, K. Celebi, J. Zuniga, C. Watson, K. M. Milaninia, and M. A. Baldo, "Near field detector for integrated surface plasmon resonance biosensor applications," Optics Express 17, 329-336 (2009).
[15]
L. G. Carrascosa, A. Calle, and L. M. Lechuga, "Label-free detection of DNA mutations by SPR: application to the early detection of inherited breast cancer," Analytical and Bioanalytical Chemistry 393, 1173-1182 (2009).
[16]
W. Jin, X. C. Lin, S. W. Lv, Y. Zhang, Q. H. Jin, and Y. Mu, "A DNA sensor based on surface plasmon resonance for apoptosis-associated genes detection," Biosensors & Bioelectronics 24, 1266-1269 (2009).
[17]
H. W. Huang, C. R. Tang, Y. L. Zeng, X. Y. Yu, B. Liao, X. D. Xia, P. G. Yi, and P. K. Chu, "Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods," Colloids and Surfaces B-Biointerfaces 71, 96-101 (2009).
[18]
R. Guntupalli, I. Sorokulova, A. Krumnow, O. Pustovyy, E. Olsen, and V. Vodyanoy, "Real-time optical detection of methicillin-resistant Staphylococcus aureus using lytic phage probes," Biosensors & Bioelectronics 24, 151-154 (2008).
[19]
M. Curreli, R. Zhang, F. N. Ishikawa, H. K. Chang, R. J. Cote, C. Zhou, and M. E. Thompson, "Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs," Ieee Transactions on Nanotechnology 7, 651-667 (2008).
[20]
M. M. Orosco, C. Pacholski, and M. J. Sailor, "Real-time monitoring of enzyme activity in a mesoporous silicon double layer," Nature Nanotechnology 4, 255-258 (2009).
[21]
C. Poitras, J. Fatisson, and N. Tufenkji, "Real-time microgravimetric quantification of Cryptosporidium parvum in the presence of potential interferents," Water Research 43, 2631-2638 (2009).
[22]
R. Z. Hao, D. B. Wang, X. E. Zhang, G. M. Zuo, H. P. Wei, R. F. Yang, Z. P. Zhang, Z. X. Cheng, Y. C. Guo, Z. Q. Cui, and Y. F. Zhou, "Rapid detection of Bacillus anthracis using monoclonal antibody functionalized QCM sensor," Biosensors & Bioelectronics 24, 1330-1335 (2009).
[23]
W. G. Miller, and F. P. Anderson, "Antibody Properties for Chemically Reversible Biosensor Applications," Analytica Chimica Acta 227, 135-143 (1989).
[24]
J. P. Alarie, and T. VoDinh, "Antibody-based submicron biosensor for benzo[a]pyrene DNA adduct," Polycyclic Aromatic Compounds 8, 45-52 (1996).
[25]
A. J. Killard, M. R. Smyth, K. Grennan, L. Micheli, and G. Palleschi, "Rapid antibody biosensor assays for environmental analysis," Biochemical Society Transactions 28, 81-84 (2000).
[26]
K. Nakano, T. Anshita, M. Nakayama, H. Irie, Y. Katayama, and M. Maeda, "DNA biosensor: Immunosensor applications for Anti-DNA antibody," Microfabricated Sensors 815, 71-83 (2002).
[27]
P. J. Conroy, S. Hearty, P. Leonard, and R. J. O'Kennedy, "Antibody production, design and use for biosensor-based applications," Seminars in Cell & Developmental Biology 20, 10-26 (2009).
[28]
S. Ichikawa, S. Toyama, and Y. Ikariyama, "Development and characterization of surface plasmon resonance (SPR)-based immunosensor," Nippon Kagaku Kaishi, 318-322 (1997).
[29]
E. E. Ferapontova, and K. V. Gothelf, "Effect of Serum on an RNA Aptamer-Based Electrochemical Sensor for Theophylline," Langmuir 25, 4279-4283 (2009).
[30]
C. C. Huang, and H. T. Chang, "Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine," Chemical Communications, 1461-1463 (2008).
[31]
Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, "Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor," Angewandte Chemie-International Edition 44, 5456-5459 (2005).
[32]
Y. Li, H. J. Lee, and R. M. Corn, "Fabrication and characterization of RNA aptamer microarrays for the study of protein-aptamer interactions with SPR imaging," Nucleic Acids Research 34, 6416-6424 (2006).
[33]
C. Y. Yao, Y. Z. Qi, Y. H. Zhao, Y. Xiang, Q. H. Chen, and W. L. Fu, "Aptamer-based piezoelectric quartz crystal microbalance biosensor array for the quantification of IgE," Biosensors & Bioelectronics 24, 2499-2503 (2009).
[34]
M. Mir, M. Vreeke, and L. Katakis, "Different strategies to develop an electrochemical thrombin aptasensor," Electrochemistry Communications 8, 505-511 (2006).
[35]
K. Ikebukuro, C. Kiyohara, and K. Sode, "Novel electrochemical sensor system for protein using the aptamers in sandwich manner," Biosensors & Bioelectronics 20, 2168-2172 (2005).
[36]
K. Ikebukuro, C. Kiyohara, and K. Sode, "Electrochemical detection of protein using a double aptamer sandwich," Analytical Letters 37, 2901-2909 (2004).
[37]
Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, "Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor," Angewandte Chemie-International Edition 44, 5456-5459 (2005).
[38]
J. H. So, H. J. Kim, H. Kang, H. Park, S. Ryu, S. W. Jung, S. Doh, S. Kim, and K. Kim, "Development of liquid scintillator system for proton flux monitoring," Journal of the Korean Physical Society 50, 1506-1509 (2007).
[39]
K. Maehashi, T. Katsura, K. Kerman, Y. Takamura, K. Matsumoto, and E. Tamiya, "Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors," Analytical Chemistry 79, 782-787 (2007).
[40]
R. J. Green, J. Davies, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, "Surface plasmon resonance for real time in situ analysis of protein adsorption to polymer surfaces," Biomaterials 18, 405-413 (1997).
[41]
T. J. Wang, C. W. Tu, F. K. Liu, and H. L. Chen, "Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation," Ieee Photonics Technology Letters 16, 1715-1717 (2004).
[42]
A. Kausaite, A. Ramanaviciene, V. Mostovojus, and A. Ramanavicius, "Surface plasmon resonance and its application to biomedical research," Medicina-Lithuania 43, 355-365 (2007).
[43]
J. H. Kim, H. Y. Yang, and H. Y. Lee, "Fabrication of Mach-Zehnder Interferometor Based on Planar Waveguide for the Application of Biosensors," International Journal of Modern Physics B 23, 1891-1896 (2009).
[44]
J. Hong, D. Yoon, and T. S. Kim, "The Mach-Zehnder Interferometer Based on Silicon Oxides for Label Free Detection of C-reactive Protein (CRP)," Biochip Journal 3, 1-11 (2009).
[45]
X. D. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, "Sensitive optical biosensors for unlabeled targets: A review," Analytica Chimica Acta 620, 8-26 (2008).
[46]
J. Hong, J. S. Choi, G. Han, J. K. Kang, C. M. Kim, T. S. Kim, and D. S. Yoon, "A Mach-Zehnder interferometer based on silicon oxides for biosensor applications," Analytica Chimica Acta 573, 97-103 (2006).
[47]
H. Mukundan, J. Z. Kubicek, A. Holt, J. E. Shively, J. S. Martinez, K. Grace, W. K. Grace, and B. I. Swanson, "Planar optical waveguide-based biosensor for the quantitative detection of tumor markers," Sensors and Actuators B-Chemical 138, 453-460 (2009).
[48]
D. S. Bagal, A. Vijayan, R. C. Aiyer, R. N. Karekar, and M. S. Karve, "Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD," Biosensors & Bioelectronics 22, 3072-3079 (2007).
[49]
A. V. Dotsenko, A. L. Diikov, and T. A. Vartanyan, "Label-free biosensor using an optical waveguide with induced Bragg grating of variable strength," Sensors and Actuators B-Chemical 94, 116-121 (2003).
[50]
D. L. Wang, N. Jiang, L. Q. Jiang, Z. L. Zhang, and X. Y. Pu, "The Precise Assignment of Whispering Gallery Modes for Lasing Spectra Emitting from Cylindrical Micro-Cavities," Spectroscopy and Spectral Analysis 28, 2749-2753 (2008).
[51]
Y. M. Wang, K. L. Cooper, and A. B. Wang, "Microgap Structured Optical Sensor for Fast Label-Free DNA Detection," Journal of Lightwave Technology 26, 3181-3185 (2008).
[52]
K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing," Optics Express 15, 7610-7615 (2007).
[53]
A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, "Optical sensing of biomolecules using microring resonators," Ieee Journal of Selected Topics in Quantum Electronics 12, 148-155 (2006).
[54]
I. D. Block, M. Pineda, C. J. Choi, and B. T. Cunningham, "High Sensitivity Plastic-Substrate Photonic Crystal Biosensor," Ieee Sensors Journal 8, 1546-1547 (2008).
[55]
L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, "A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation," Apoptosis 12, 1061-1068 (2007).
[56]
I. D. Block, L. L. Chan, and B. T. Cunningham, "Photonic crystal optical biosensor incorporating structured low-index porous dielectric," Sensors and Actuators B-Chemical 120, 187-193 (2006).
[57]
L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Hoiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Optics Express 14, 8224-8231 (2006).
[58]
I. Karamollaoglu, H. A. Oktem, and M. Mutlu, "QCM-based DNA biosensor for detection of genetically modified organisms (GMOs)," Biochemical Engineering Journal 44, 142-150 (2009).
[59]
S. R. Hong, S. J. Choi, H. Do Jeong, and S. Hong, "Development of QCM biosensor to detect a marine derived pathogenic bacteria Edwardsiella tarda using a novel immobilisation method," Biosensors & Bioelectronics 24, 1635-1640 (2009).
[60]
F. J. He, X. Y. Cui, and J. L. Ren, "A Novel QCM-based Biosensor for Detection of Microorganisms Producing Hydrogen Sulfide," Analytical Letters 41, 2697-2709 (2008).
[61]
A. Sharon, D. Rosenblatt, and A. A. Friesem, "Resonant grating waveguide structures for visible and near-infrared radiation," Journal of the Optical Society of America a-Optics Image Science and Vision 14, 2985-2993 (1997).
[62]
B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sensors and Actuators B-Chemical 85, 219-226 (2002).
[63]
P. Y. Li, L. Bo, J. Gerstenmaier, and B. T. Cunningham, "A new method for label-free imaging of biomolecular interactions," Sensors and Actuators B-Chemical 99, 6-13 (2004).
[64]
N. Ganesh, I. D. Block, and B. T. Cunningham, "Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio," Applied Physics Letters 89, - (2006).
[65]
B. Cunningham, J. Qiu, P. Li, and B. Lin, "Enhancing the surface sensitivity of colorimetric resonant optical biosensors," Sensors and Actuators B-Chemical 87, 365-370 (2002).
[66]
I. D. Block, L. L. Chan, and B. T. Cunningham, "Large-area submicron replica molding of porous low-k dielectric films and application to photonic crystal biosensor fabrication," Microelectronic Engineering 84, 603-608 (2007).
[67]
I. D. Block, L. L. Chan, and B. T. Cunningham, "Photonic crystal optical biosensor incorporating structured low-index porous dielectric," Sensors and Actuators B-Chemical 120, 187-193 (2006).
[68]
C. J. Choi, and B. T. Cunningham, "A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis," Lab on a Chip 7, 550-556 (2007).
[69]
L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, "A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation," Apoptosis 12, 1061-1068 (2007).
[70]
I. Abdulhalim, "BIOSENSING CONFIGURATIONS USING GUIDED WAVE RESONANT STRUCTURES," Optical Waveguide Sensing and Imaging Chap. 9, 211 (2008).
[71]
D. L. Robertson, and G. F. Joyce, "Selection Invitro of an Rna Enzyme That Specifically Cleaves Single-Stranded-DNA," Nature 344, 467-468 (1990).
[72]
C. Tuerk, and L. Gold, "Systematic Evolution of Ligands by Exponential Enrichment - Rna Ligands to Bacteriophage-T4 DNA-Polymerase," Science 249, 505-510 (1990).
[73]
J. M. Burke, and A. Berzalherranz, "Invitro Selection and Evolution of Rna - Applications for Catalytic Rna, Molecular Recognition, and Drug Discovery," Faseb Journal 7, 106-112 (1993).
[74]
S. P. Song, L. H. Wang, J. Li, J. L. Zhao, and C. H. Fan, "Aptamer-based biosensors," Trac-Trends in Analytical Chemistry 27, 108-117 (2008).
[75]
A. Geiger, P. Burgstaller, H. vonderEltz, A. Roeder, and M. Famulok, "RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity," Nucleic Acids Research 24, 1029-1036 (1996).
[76]
R. D. Jenison, S. C. Gill, A. Pardi, and B. Polisky, "High-Resolution Molecular Discrimination by Rna," Science 263, 1425-1429 (1994).
[77]
S. D. Mendonsa, and M. T. Bowser, "In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis," Analytical Chemistry 76, 5387-5392 (2004).
[78]
B. A. Brown, "Hematology : Principles and Procedures," Philadelphia lea & Febiger (1993).
[79]
J. A. Huntington, "Molecular recognition mechanisms of thrombin," Journal of Thrombosis and Haemostasis 3, 1861-1872 (2005).
[80]
L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, "Selection of Single-Stranded-DNA Molecules That Bind and Inhibit Human Thrombin," Nature 355, 564-566 (1992).
[81]
Q. Y. Wu, M. Tsiang, and J. E. Sadler, "Localization of the Single-Stranded-DNA Binding-Site in the Thrombin Anion-Binding Exosite," Journal of Biological Chemistry 267, 24408-24412 (1992). [82]
W. X. Li, A. V. Kaplan, G. W. Grant, J. J. Toole, and L. L. K. Leung, "A Novel Nucleotide-Based Thrombin Inhibitor Inhibits Clot-Bound Thrombin and Reduces Arterial Platelet Thrombus Formation," Blood 83, 677-682 (1994).
[83]
E. Heyduk, and T. Heyduk, "Nucleic acid-based fluorescence sensors for detecting proteins," Analytical Chemistry 77, 1147-1156 (2005).
[84]
M. G. M. a. T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. So. Am 71, 811-818 (1981).
[85]
S. C. D. Gilbert S. D., Wise S. J., and Batey R. T., "Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain," J. Mol. Biol. 359, 754-768 (2006).
[86]
B. J. Noeske J., Furtig B., Nasiri H. R., Schwalbe H., and Wohnert J., "Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch," Nucleic Acids Research 35, 572-583 (2007).
[87]
W. J. E. Muller M., Weichenrieder O., and Suess B., "Thermodynamic characterization of an engineered tetracycline-binding riboswitch," Nucleic Acids Research 34, 2607-2617 (2006).
指導教授 張正陽(Jenq-Yang Chang) 審核日期 2009-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明