博碩士論文 103322073 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.118.160.215
姓名 奉筠庭(Yun-Ting Feng)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 電動汽車共享之行為意向研究
相關論文
★ 圖書館系統通閱移送書籍之車輛途程問題★ 起迄對旅行時間目標下高速公路匝道儀控之研究
★ 結合限制規劃法與螞蟻演算法求解運動排程問題★ 共同邊界資料包絡分析法在運輸業之應用-以國內航線之經營效率為例
★ 雙北市公車乘客知覺服務品質、知覺價值、滿意度、行為意向路線與乘客之跨層次中介效果與調節式中介效果★ Investigating the influential factors of public bicycle system and cyclist heterogeneity
★ A Mixed Integer Programming Formulation for the Three-Dimensional Unit Load Device Packing Problem★ 高速公路旅行時間預測之研究--函數資料分析之應用
★ Behavior Intention and its Influential Factors for Motorcycle Express Service★ Inferring transportation modes (bus or vehicle) from mobile phone data using support vector machine and deep neural network.
★ 混合羅吉特模型於運具選擇之應用-以中央大學到桃園高鐵站為例★ Preprocessing of mobile phone signal data for vehicle mode identification using map-matching technique
★ 含額外限制式動態用路人均衡模型之研究★ 動態起迄旅次矩陣推估模型之研究
★ 動態號誌時制控制模型求解演算法之研究★ 不同決策變數下動態用路人均衡路徑選擇模型之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著共享經濟的崛起,在交通方式上以共享形式的汽車共享制度逐漸受到重視,世界各國開始積極推廣以電動車為主的汽車共享之服務。本研究旨在探討民眾使用電動汽車共享之行為意向,以計畫行為理論(theory of planned behavior, TPB)為基礎並加入知覺風險、個人創新特質、環保意識等影響因素,設計本研究框架。研究方法利用:(1)偏最小平方結構方程模式(partial least squares structural equation modeling, PLS-SEM)檢驗路徑關係;(2)偏最小平方多群組分析(partial least squares multi-group analysis, PLS-MGA)解釋可觀測異質性的調節效果;(3)有限混合偏最小平方(finite mixture partial least squares, FIMIX-PLS)探索不可觀測異質性。本研究於台北地區蒐集307個有效樣本,實證結果顯示:(1)計畫行為理論之因子均顯著影響行為意向;(2)在其他影響因素中,除知覺風險外,均會顯著影響行為意向。另外,個人創新特質與知覺風險並無顯著關係;(3)異質性分析結果中,性別與每星期使用汽車天數存在部分路徑的調節效果及辨別出樣本存有兩個潛在類別。最後基於分析結果提出研究結論與意涵。
摘要(英) With the rising of sharing economy, the form of car-sharing system has gradually taken seriously on transportation. Each country began to promote the electric vehicle sharing service (EV-Sharing) with actively in the world. The purpose of this research is to develop a practical method to enable the local government or the transportation authorities to understand users’ behavior intention and thus formulate management strategies. The research framework is constructed mainly based on Theory of Planned Behavior (TPB) and add the factors of perceived risk, personal innovativeness, environmental consciousness. The research framework is then analyzed with (1) Partial least squares structural equation modeling (PLS-SEM) for exploring path relationships of influential factors of using EV-Sharing, (2) Partial least squares multi-group analysis (PLS-MGA) for elaborating observed heterogeneity of moderating effect, and (3) Finite mixture partial least squares (FIMIX-PLS) for unobserved heterogeneity of moderating effect. To conduct the experiment, we collected a sample of 307 respondents from Taipei city in Taiwan. The result shows: (1) All factors from TPB have great impact on the behavior intention of using EV-Sharing, (2) The additional factors, expect for perceived risk, indicate significantly effect on behavior intention of using EV-Sharing. In addition, personal innovativeness is no significantly effect on perceived risk, (3) The result of heterogeneous analysis shows that gender and car usage have partial moderation effect, and two latent classes can be identified among the sample. Finally, conclusion and implications based on the analysis results.
關鍵字(中) ★ 電動汽車共享
★ 計畫行為理論
★ 偏最小平方法
★ 異質性
關鍵字(英) ★ Electric vehicle sharing service
★ Theory of planned behavior (TPB)
★ Partial Least Squares Structural Equation Modeling (PLS-SEM)
★ heterogeneity
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
1. 緒論 1
2. 文獻探討與研究假設 4
2.1 理論背景 4
2.2 研究假設 5
2.2.1 計畫行為理論之延伸與電動汽車共享之行為意向的關係 5
2.2.2 知覺風險與電動汽車共享之行為意向的關係 6
2.2.3 個人創新特質與電動汽車共享之行為意向以及知覺風險的關係 6
2.2.4 環保意識與電動汽車共享之行為意向的關係 6
2.2.5 異質性分析 7
2.2.5.1 可觀測之異質性 7
2.2.5.2 不可觀測之異質性 8
3. 研究方法 12
3.1 結構方程模式 12
3.2 偏最小平方法結構方程模式(PLS-SEM)之概念 12
3.3 PLS-SEM與CB-SEM 13
3.4 PLS-SEM異質性分析 14
3.4.1 偏最小平方多群組分析(PLS-MGA) 14
3.4.2 有限混合偏最小平方法(FIMIX-PLS) 15
4. 操作型定義與問卷設計 16
5. 資料統計與結果分析 17
5.1 問卷資料蒐集 17
5.2 敘述性統計 17
5.3 共同方法變異分析 19
5.4 測量模式 19
5.4.1 信度分析 20
5.4.2 效度分析 21
5.5 結構模式 24
5.6 異質性分析 26
5.6.1 可觀測之異質性分析 26
5.6.2 不可觀測之異質性分析 28
5.7 小結 31
6. 結果討論與管理意涵 33
6.1 結果發現 33
6.2 發展策略 34
6.3 管理意涵 35
7. 研究貢獻及限制 37
7.1 研究貢獻 37
7.2 研究限制與未來研究方向 37
參考文獻 39
附錄A:研究問卷 45
A.1 調查問卷 45
A.2 問卷題項參考來源與篩濾標準 50
附錄B:測量題項之敘述性統計 51
附錄C:可觀測異質性分群之敘述性統計 53
參考文獻 中華民國交通部,http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100,民國103年。
財團法人車輛研究測試中心,https://www.artc.org.tw/,民國104年。
經濟部智慧電動車先導運行計畫資訊網,http://www.lev.org.tw/iev/caseLink_C.aspx,民國105年。
Agarwal, R., & Karahanna, E., 2000. Time flies when you′re having fun: Cognitive absorption and beliefs about information technology usage. MIS Quarterly, 24(4), 665-694.
Agarwal, R., Prasad, J., 1998. A conceptual and operational definition of personal innovativeness in the domain of information technology. Information Systems Research, 9(2), 204–215.
Ajzen, I., 1985. From intentions to actions: A Theory of Planned Behavior. Heidelberg, Springer, Germany.
Ajzen, I., 1991. The Theory of Planned Behavior, Organizational Behavior and Human Decision Processes, 50(2), 179-211.
Ajzen, I., Fishbein, M., 1980. Understanding Attitudes and Predicting Social Behavior, Prentice-Hall, Englewood Cliffs, NJ.
Akaike, H., 1987. Factor analysis and AIC. Psychometrika, 52(3), 317-332.
Aldás-Manzano, J., Ruiz-Mafé, C., Sanz-Blas, S., 2009. Exploring individual personality factors as drivers of M-shopping acceptance. Industrial Management and Data Systems 109(6), 739–757.
Baron, R. M., & Kenny, D. A., 1986. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173-1182.
Bauer, R. A., 1960. Consumer behavior as risk taking, In: Hancock, R.S. (Ed.), Dynamic marketing for a Changing World, American Marketing Association, Chicago, 389-398.
Becker, J. M., Rai, A., Ringle, C. M., & Völckner, F., 2013. Discovering unobserved heterogeneity in structural equation models to avert validity threats. MIS Quarterly, 37(3), 665-694.
Bozdogan, H., 1987. Model selection and Akaike′s information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345-370.
Bozdogan, H., 1994. Mixture-model cluster analysis using model selection criteria and a new informational measure of complexity. Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modeling: An Informational Approach, Dordrecht, Netherlands, 69-113.
Campbell, D. T., & Fiske, D. W., 1959. Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56(2), 81-105.
Chang, C. T., 2012. Are guilt appeals a panacea in green advertising? The right formula of issue proximity and environmental consciousness. International Journal of Advertising, 31(4), 741-771.
Chang, H. L. and T. H. Yeh, 2007. Motorcyclist accident involvement by age, gender, and risky behaviors in Taipei, Taiwan. Transportation Research Part F: Traffic Psychology and Behaviour, 10(2), 109-122.
Chen, C. F., & Chao, W. H., 2011. Habitual or reasoned? Using the theory of planned behavior, technology acceptance model, and habit to examine switching intentions toward public transit. Transportation Research Part F: Traffic Psychology and Behaviour, 14(2), 128-137.
Chen, C. T., 2016. Investigating the Influential Factors of Public Bicycle System and Cyclist Heterogeneity. Master′s Thesis, National Central University, Taiwan.
Chen, S. Y., 2016. Using the sustainable modified TAM and TPB to analyze the effects of perceived green value on loyalty to a public bike system. Transportation Research Part A: Policy and Practice, 88, 58-72.
Cheng, Y. H., & Huang, T. Y., 2013. High speed rail passengers’ mobile ticketing adoption. Transportation Research Part C: Emerging Technologies, 30, 143-160.
Chin, W. W., 1998. The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295(2), 295-336.
Chin, W.W., & Newsted, P.R., 1999. Structural equation modeling analysis with small samples using partial least squares, In R.H. Hoyle (Ed.), Statistical Strategies for Small Sample Research, Sage, Thousand Oaks, CA, 307-341.
Cornelissen, G., Pandelaere, M., Warlop, L., & Dewitte, S., 2008. Positive cueing: promoting sustainable consumer behavior by cueing common environmental behaviors as environmental. International Journal of Research in Marketing, 25(1), 46-55.
Cronbach, L. J., 1951. Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334.
Dowling, G. R., & Staelin, R., 1994. A model of perceived risk and intended risk-handling activity. Journal of Consumer Research, 21(1), 119-134.
Dunlap, N. K., Mergo, W., Jones, J. M., & Carrick, J. D., 2002. A general procedure for a one-pot oxidative cleavage/Wittig reaction of glycols. Tetrahedron Letters, 43(21), 3923-3925.
Featherman, M. S., & Pavlou, P. A., 2003. Predicting e-services adoption: a perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451-474.
Fishbein, M., Ajzen, I., 1975. Belief, Attitudes, Intention, and Behavior. An Introduction to Theory and Research. Addison-Wesley, Boston, MA.
Fornell, C., and Larcker, D. F., 1981. Evaluating structural equation models with unobservable variables and measurement error, Journal of Marketing Research, 18(1), 39-50.
Forsythe, S. M., & Shi, B., 2003. Consumer patronage and risk perceptions in Internet shopping, Journal of Business Research, 56(11), 867-875.
Gao, S., Moe, S.P., Krogstie, J., 2010. An empirical test of the mobile services acceptance model. Paper presented at the 2010 Ninth International Conference on Mobile Business and 2010 Ninth Global Mobility Roundtable (ICMB-GMR), Athens, Greece, DOI:10.1109/ICMB-GMR.2010.51.
Goldsmith, R.E., 2000. Identifying wine innovators: a test of the domain-specific innovativeness scale using known groups. International Journal of Wine Marketing, 12(2), 37–46.
Gupta, S., Kim, H.W., 2010. Value-driven Internet shopping: the mental accounting theory perspective. Psychology and Marketing, 27(1), 13-35.
Hahn, C. H., Johnson, M. D., Herrmann, A., Huber, F., 2002. Capturing customer heterogeneity using a finite mixture PLS approach. Schmalenbach Business Review, 54(3), 243-269.
Hair, J.F., Hult, G. T. M., Ringle, C., Sarstedt, M., 2014. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Sage, Thousand Oaks, CA.
Hair, J. F., Ringle, C. M., & Sarstedt, M., 2011. PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152.
Hair, J. F., Sarstedt, M., Matthews, L. M., & Ringle, C. M., 2016. Identifying and treating unobserved heterogeneity with FIMIX-PLS: part I–method. European Business Review, 28(1), 63-76
Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A., 2012. An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414-433.
Harman, H. H., 1976. Modern factor analysis, 3rd ed. University of Chicago Press, Chicago.
Haustein, S., Klöckner, C. A., & Blöbaum, A., 2009. Car use of young adults: The role of travel socialization. Transportation Research part F: Traffic Psychology and Behaviour, 12(2), 168-178.
Henseler, J., 2012. PLS-MGA: A non-parametric approach to partial least squares-based multi-group analysis. In: W. A. Gaul, A. Geyer-Schulz, L. Schmidt-Thieme, and J. Kunze (Eds.) Challenges at the Interface of Data Analysis, Computer Science, and Optimization - Proceedings of the 34th Annual Conference of the Gesellschaft für Klassifikation, Karlsruhe, July 21-23, 2010. , Springer, Berlin, Heidelberg, 495-501.
Henseler, J., Ringle, C. M., Sarstedt, M., 2015. A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135.
Henseler, J., Ringle, C. M., Sarstedt, M., 2016. Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3), DOI: 10.1108/IMR-09-2014-0304. (in press)
Henseler, J., Ringle, C. M., & Sinkovics, R. R., 2009. The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20(1), 277-319.
Hines, J. M., Hungerford, H. R., & Tomera, A. N., 1987. Analysis and synthesis of research on responsible environmental behavior: a meta-analysis. The Journal of Environmental Education, 18(2), 1-8.
Hsiao, C. H., & Yang, C., 2010. Predicting the travel intention to take High Speed Rail among college students. Transportation Research Part F: Traffic Psychology and Behaviour, 13(4), 277-287.
Hui, B. S., & Wold, H., 1982. Consistency and consistency at large of partial least squares estimates. In K. G. Joreskog & H. Wold (Eds.), Systems under Indirect Observation, Part II, Amsterdam: North-Holland, 119-130.
Hunecke, M., Haustein, S., Grischkat, S., & Böhler, S., 2007. Psychological, sociodemographic, and infrastructural factors as determinants of ecological impact caused by mobility behavior. Journal of Environmental Psychology, 27(4), 277-292.
Kaiser, F. G., Wölfing, S., & Fuhrer, U., 1999. Environmental attitude and ecological behaviour. Journal of Environmental Psychology, 19(1), 1-19.
Keil, M., Tan, B. C., Wei, K.-K., Saarinen, T., Tuunainen, V., Wassenaar, A., 2000. A cross-cultural study on escalation of commitment behavior in software projects. MIS Quarterly, 24(2), 299-325.
Kim, D.J., Ferrin, D.L., Rao, H.R., 2008. A trust-based consumer decision-making model in electronic commerce: the role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 544–564.
Kuo, Y.F., Yen, S.N., 2009. Towards an understanding of the behavioral intention to use 3G mobile value-added services. Computers in Human Behavior, 25(1), 103–110.
Lane, C., 2005. PhillyCarShare: First-year social and mobility impacts of carsharing in Philadelphia, Pennsylvania. Transportation Research Record: Journal of the Transportation Research Board, No.1927, Transportation Research Board of the National Academies, Washington, D.C. ,158-166.
Liang, Z., Jaszczak, R. J., Coleman, R. E., 1992. Parameter estimation of finite mixtures using the EM algorithm and information criteria with application to medical image processing. IEEE Transactions on Nuclear Science, 39(4), 1126-1133.
Limayern, M., Khalifa, M., Frini, A., 2000. What makes consumers shop via Internet? A longitudinal study of online shopping. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 30(4), 421–432.
Luo, X., Li, H., Zhang, J., Shim, J.P., 2010. Examining multi-dimensional trust and multi-faceted risk in initial acceptance of emerging technologies: an empirical study of mobile banking services. Decision Support Systems, 49(2), 222–234.
Matthews, L. M., Sarstedt, M., Hair, J. F., Ringle, C. M., 2016. Identifying and treating unobserved heterogeneity with FIMIX-PLS: Part II–a case study. European Business Review, 28(2), 208-224.
Mitchell, V. W., & Greatorex, M., 1993. Risk perception and reduction in the purchase of consumer services. Service Industries Journal, 13(4), 179-200.
Miyazaki, A.D., Fernandez, A., 2001. Consumer perceptions of privacy and security risks for online shopping. The Journal of Consumer Affairs, 35(1), 27–44.
Molin, E., Mokhtarian, P., Kroesen, M., 2016. Multimodal travel groups and attitudes: A latent class cluster analysis of Dutch travelers. Transportation Research Part A: Policy and Practice, 83, 14-29.
Mooi, E. A., & Sarstedt, M., 2011. A concise guide to market research: the process, data, and methods using IBM SPSS Statistics. Springer, Berlin.
Nunally, J. C., & Bernstein, I. H., 1994. Psychometric Theory. New York: McGraw-Hill.
Nunnally, J. C., & Bernstein, I. H., 1994. The assessment of reliability. Psychometric Theory, 3(1), 248-292.
O’Fallon, C., Sullivan, C., and Hensher, D. A., 2004. Constraints affecting mode choices by morning car commuters. Transport Policy, 11, 17-29.
Paul Goodwin, 1995. Car Dependence. Transport Policy, 2(3), 151-152.
Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P., 2003. Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903.
Ramaswamy, V., DeSarbo, W. S., Reibstein, D. J., Robinson, W. T., 1993. An empirical pooling approach for estimating marketing mix elasticities with PIMS data. Marketing Science, 12(1), 103-124.
Reinartz, W., Haenlein, M., & Henseler, J., 2009. An empirical comparison of the efficacy of covariance-based and variance-based SEM. International Journal of Research in Marketing, 26, 332-344.
Ringle, C. M., Götz, O., Wetzels, M., & Wilson, B., 2009. On the use of formative measurement specifications in structural equation modeling: A Monte Carlo simulation study to compare covariance-based and partial least squares model estimation methodologies (METEOR Research Memoranda RM/09/014). Maastricht, the Netherlands: Maastricht University.
Ringle, C. M., Sarstedt, M., & Schlittgen, R., 2014. Genetic algorithm segmentation in partial least squares structural equation modeling. OR Spectrum, 36(1), 251-276.
Ringle, C. M., Wende, S., Becker, J.-M., 2015. SmartPLS 3, SmartPLS GmbH, Bönningstedt (available at http://www. smartpls. com).
Ringle, C.M., Wende, S., Will, A., 2010. Finite mixture partial least squares analysis: Methodology and numerical examples. In: Esposito Vinzi, V., Chin, W.W., Henseler, J.and Wang, H., (Eds), Handbook of Partial Least Squares: Concepts, Methods and Applications, Springer Handbooks of Computational Statistics Series, 2, Springer, Heidelberg, Dordrecht, London, NY, 195-218.
Roberts, J. A., & Bacon, D. R., 1997. Exploring the subtle relationships between environmental concern and ecologically conscious consumer behavior. Journal of Business Research, 40(1), 79-89.
Rogers, E.M., 1995. Diffusion of Innovations (4 ed.), New York, Free Press.
Sarstedt, M., Becker, J.-M., Ringle, C. M., Schwaiger, M., 2011. Uncovering and treating unobserved heterogeneity with FIMIX-PLS: Which model selection criterion provides an appropriate number of segments? Schmalenbach Business Review, 63(1), 34-62.
Sarstedt, M., Ringle, C. M., 2010. Treating unobserved heterogeneity in PLS path modeling: A comparison of FIMIX-PLS with different data analysis strategies. Journal of Applied Statistics, 37(8), 1299-1318.
Schwarz, G., 1978. Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464.
Spector, P. E., & Brannick, M. T., 1995. The nature and effects of method variance in organizational research. International Review of Industrial and Organizational Psychology West Sussex, John Wiley, England, 249-274.
Taylor, S., & Todd, P. A., 1995a. Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144-176.
Taylor, S., & Todd, P., 1995b. Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions. International Journal of Research in Marketing, 12(2), 137-155.
Ulleberg, P., 2001. Personality subtypes of young drivers. Relationship to risk-taking preferences, accident involvement, and response to a traffic safety campaign. Transportation Research Part F: Traffic Psychology and Behaviour, 4(4), 279-297.
Wan, C., Shen, G. Q., & Yu, A., 2014. The moderating effect of perceived policy effectiveness on recycling intention. Journal of Environmental Psychology, 37, 55-60.
Wen, C.-H., Wang, W.-C., Fu, C., 2012. Latent class nested logit model for analyzing high-speed rail access mode choice. Transportation Research Part E: Logistics and Transportation Review., 48(2), 545-554.
Wertz, C., Linn, R., and J¨oreskog, K., 1974, Intraclass reliability estimates: Testing structural assumptions, Educational and Psychological Measurement, 34(1), 25–33.
Yang, K.C.C., 2005, Exploring factors affecting the adoption of mobile commerce in Singapore, Telematics and Informatics, 22(3), 257–277.
指導教授 陳惠國(Huey-Kuo Chen) 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明