參考文獻 |
[1] P. Ragesh, V. Anand Ganesh, S.V. Nair, A.S. Nair, A review on ‘self-cleaning and multifunctional materials’. Journal of Materials Chemistry A 2014, 2 (36), 14773.
[2] T. Darmanin, F. Guittard, Recent advances in the potential applications of bioinspired superhydrophobic materials. J. Mater. Chem. A 2014, 2 (39), 16319-16359.
[3] Z. Chu, S. Seeger, Superamphiphobic surfaces. Chem Soc Rev 2014, 43 (8), 2784-2798.
[4] W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202 (1), 1-8.
[5] A. Tuteja, W. Choi, M. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley, R.E. Cohen, Designing superoleophobic surfaces. Science 2007, 318 (5856), 1618-1622.
[6] R.N. Wenzel, Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry 1936, 28 (8), 988-994.
[7] A. Cassie, S. Baxter, Wettability of porous surfaces. Transactions of the Faraday Society 1944, 40, 546-551.
[8] T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Super-water-repellent fractal surfaces. Langmuir 1996, 12 (9), 2125-2127.
[9] K. Tsujii, T. Yamamoto, T. Onda, S. Shibuichi, Super oil‐repellent surfaces. Angewandte Chemie International Edition in English 1997, 36 (9), 1011-1012.
[10] J. Xi, L. Feng, L. Jiang, A general approach for fabrication of superhydrophobic and superamphiphobic surfaces. Applied Physics Letters 2008, 92 (5), 053102.
[11] T. Darmanin, F. Guittard, One-pot method for build-up nanoporous super oil-repellent films. J Colloid Interface Sci 2009, 335 (1), 146-149.
[12] R. Saraf, H.J. Lee, S. Michielsen, J. Owens, C. Willis, C. Stone, E. Wilusz, Comparison of three methods for generating superhydrophobic, superoleophobic nylon nonwoven surfaces. Journal of Materials Science 2011, 46 (17), 5751-5760.
[13] H. Wang, Y. Xue, T. Lin, One-step vapour-phase formation of patternable, electrically conductive, superamphiphobic coatings on fibrous materials. Soft Matter 2011, 7 (18), 8158.
[14] B. Leng, Z. Shao, G. de With, W. Ming, Superoleophobic cotton textiles. Langmuir 2009, 25 (4), 2456-2460.
[15] Z. He, M. Ma, X. Lan, F. Chen, K. Wang, H. Deng, Q. Zhang, Q. Fu, Fabrication of a transparent superamphiphobic coating with improved stability. Soft Matter 2011, 7 (14), 6435.
[16] J. Yang, Z. Zhang, X. Xu, X. Men, X. Zhu, X. Zhou, Superoleophobic textured aluminum surfaces. New Journal of Chemistry 2011, 35 (11), 2422.
[17] H. Kim, K. Noh, C. Choi, J. Khamwannah, D. Villwock, S. Jin, Extreme superomniphobicity of multiwalled 8 nm TiO2 nanotubes. Langmuir 2011, 27 (16), 10191-10196.
[18] X. Zhu, Z. Zhang, X. Xu, X. Men, J. Yang, X. Zhou, Q. Xue, Facile fabrication of a superamphiphobic surface on the copper substrate. J Colloid Interface Sci 2012, 367 (1), 443-449.
[19] M. Im, H. Im, J.-H. Lee, J.-B. Yoon, Y.-K. Choi, A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate. Soft Matter 2010, 6 (7), 1401.
[20] A. Susarrey-Arce, Á.G. Marín, S. Schlautmann, L. Lefferts, J.G.E. Gardeniers, A. van Houselt, One-step sculpting of silicon microstructures from pillars to needles for water and oil repelling surfaces. Journal of Micromechanics and Microengineering 2013, 23 (2), 025004.
[21] X. Deng, L. Mammen, H.-J. Butt, D. Vollmer, Candle soot as a template for a transparent robust superamphiphobic coating. Science 2012, 335 (6064), 67-70.
[22] T. Fujii, Y. Aoki, H. Habazaki, Fabrication of super-oil-repellent dual pillar surfaces with optimized pillar intervals. Langmuir 2011, 27 (19), 11752-11756.
[23] X. Xu, Z. Zhang, F. Guo, J. Yang, X. Zhu, X. Zhou, Q. Xue, Superamphiphobic self-assembled monolayer of thiol on the structured Zn surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 396, 90-95.
[24] H. Jin, M. Kettunen, A. Laiho, H. Pynnonen, J. Paltakari, A. Marmur, O. Ikkala, R.H. Ras, Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 2011, 27 (5), 1930-1934.
[25] D. Xiong, G. Liu, L. Hong, E.S. Duncan, Superamphiphobic diblock copolymer coatings. Chemistry of Materials 2011, 23 (19), 4357-4366.
[26] H. Jin, X. Tian, O. Ikkala, R.H. Ras, Preservation of superhydrophobic and superoleophobic properties upon wear damage. ACS applied materials & interfaces 2013, 5 (3), 485-488.
[27] J. Yang, Z. Zhang, X. Men, X. Xu, X. Zhu, A simple approach to fabricate superoleophobic coatings. New J. Chem. 2011, 35 (3), 576-580.
[28] R. Campos, A.J. Guenthner, A.J. Meuler, A. Tuteja, R.E. Cohen, G.H. McKinley, T.S. Haddad, J.M. Mabry, Superoleophobic surfaces through control of sprayed-on stochastic topography. Langmuir 2012, 28 (25), 9834-9841.
[29] X. Wang, H. Hu, Q. Ye, T. Gao, F. Zhou, Q. Xue, Superamphiphobic coatings with coralline-like structure enabled by one-step spray of polyurethane/carbon nanotube composites. Journal of Materials Chemistry 2012, 22 (19), 9624.
[30] D. Han, A.J. Steckl, Superhydrophobic and oleophobic fibers by coaxial electrospinning. Langmuir 2009, 25 (16), 9454-9462.
[31] S. Srinivasan, S.S. Chhatre, J.M. Mabry, R.E. Cohen, G.H. McKinley, Solution spraying of poly(methyl methacrylate) blends to fabricate microtextured, superoleophobic surfaces. Polymer 2011, 52 (14), 3209-3218.
[32] S. Pan, A.K. Kota, J.M. Mabry, A. Tuteja, Superomniphobic surfaces for effective chemical shielding. Journal of the American Chemical Society 2012, 135 (2), 578-581.
[33] W.K. Cho, S. Park, S. Jon, I.S. Choi, Water-repellent coating: formation of polymeric self-assembled monolayers on nanostructured surfaces. Nanotechnology 2007, 18 (39), 395602.
[34] D. Xiong, G. Liu, J. Zhang, S. Duncan, Bifunctional core–shell–corona particles for amphiphobic coatings. Chemistry of Materials 2011, 23 (11), 2810-2820.
[35] E. Yoshida, Preparation of micro- and nanospheres with superamphiphobic surfaces by dispersion polymerization. Colloid and Polymer Science 2011, 290 (6), 525-530.
[36] X.-M. Li, T. He, M. Crego-Calama, D.N. Reinhoudt, Conversion of a metastable superhydrophobic surface to an ultraphobic surface. Langmuir 2008, 24 (15), 8008-8012.
[37] L. Xu, R.G. Karunakaran, J. Guo, S. Yang, Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles. ACS applied materials & interfaces 2012, 4 (2), 1118-1125.
[38] A. Qu, X. Wen, P. Pi, J. Cheng, Z. Yang, Preparation of hybrid film with superhydrophobic surfaces based on irregularly structure by emulsion polymerization. Applied Surface Science 2007, 253 (24), 9430-9434.
[39] C.-T. Hsieh, F.-L. Wu, W.-Y. Chen, Superhydrophobicity and superoleophobicity from hierarchical silica sphere stacking layers. Materials Chemistry and Physics 2010, 121 (1-2), 14-21.
[40] A. Das, T.M. Schutzius, I.S. Bayer, C.M. Megaridis, Superoleophobic and conductive carbon nanofiber/fluoropolymer composite films. Carbon 2012, 50 (3), 1346-1354.
[41] B.P. Dyett, A.H. Wu, R.N. Lamb, Toward Superhydrophobic and Durable Coatings: Effect of Needle vs Crater Surface Architecture. ACS applied materials & interfaces 2014, 6 (12), 9503-9507.
[42] H. Minami, Y. Mizuta, T. Suzuki, Preparation of raspberry-like polymer particles by a heterocoagulation technique utilizing hydrogen bonding interactions between steric stabilizers. Langmuir 2012, 29 (2), 554-560.
[43] J. Wang, X. Yang, Synthesis of core-corona polymer hybrids with a raspberry-like structure by the heterocoagulated pyridinium reaction. Langmuir 2008, 24 (7), 3358-3364.
[44] A. Telford, B. Hawkett, C. Such, C. Neto, Mimicking the wettability of the rose petal using self-assembly of waterborne polymer particles. Chemistry of Materials 2013, 25 (17), 3472-3479.
[45] W. Jiang, C.M. Grozea, Z. Shi, G. Liu, Fluorinated raspberry-like polymer particles for superamphiphobic coatings. ACS applied materials & interfaces 2014, 6 (4), 2629-2638.
[46] S. Mehlhase, C.G. Schäfer, J. Morsbach, L. Schmidt, R. Klein, H. Frey, M. Gallei, Vinylphenylglycidyl ether-based colloidal architectures: high-functionality crosslinking reagents, hybrid raspberry-type particles and smart hydrophobic surfaces. RSC Adv. 2014, 4 (78), 41348-41352. |