博碩士論文 103324031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.147.47.108
姓名 蕭亦智(YI-CHIH HSIAO)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 高分子顆粒製備雙疏特性表面
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 利用次微米球建構具機械性質之光子晶體薄膜
★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體
★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究★ 含水溶性藥物之乙基纖維素微膠囊的製備
★ 銅箔基板環氧樹脂含浸液之研究★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備
★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子
★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體★ 溶膠-凝膠法製備相轉移材料微膠囊
★ 親疏水性光阻製備★ 奈米多孔性材料之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討以無乳化劑乳化聚合法合成次微米級和奈米級的核殼結構高分子顆粒來製備雙疏性表面的可能性。並利用殼層導入帶有含氟官能基的單體來提升接觸角,該含氟單體為1H, 1H, 2H, 2H-全氟辛醇丙烯酸酯(TAN)。
  次微米級核殼高分子顆粒是以苯乙烯(St)為核心單體,二甲基丙烯酸乙二醇酯(EGDMA)為交聯劑,殼層以TAN和丙烯酸丁酯(BA)為單體,而奈米級核殼高分子顆粒以BA為核心單體,並加入適當量的對-苯乙烯磺酸鈉鹽(NASS)以縮小粒徑至奈米級,再以相同的交聯劑和殼層組成,藉此來探討不同單體種類及調控核心或殼層克數和TAN含量以了解對接觸角的影響,還進一步嘗試將兩種不同類型的核殼高分子球混合以了解其對於接觸角的影響。利用影像式接觸角量測儀、掃描式電子顯微鏡(SEM)及動態光散射儀(DLS)來進行核殼高分子的特性分析。實驗結果顯示核殼高分子球皆為均一球型,粒徑範圍為200~300 nm以及30~50 nm。核殼次微米球對水的接觸角可達126度、對油的接觸角可達20度,而核殼奈米球對水的接觸角可達112度、對油的接觸角可達64度。最後,以混合製程製備雙疏表面時,可得介於兩混合的核殼高分子球之接觸角的雙疏表面。
摘要(英) Amphiphobic surface was made from submicro and nano core-shell spheres prepared by soap-free emulsion polymerization. Fluoride, 1H, 1H, 2H, 2H-perfluorooctyl acrylate (TAN), was introduced to shell structure to improve amphiphobic property.
  Submicro core-shell spheres were manufactured by using styrene (St) and ethylene glycol dimethylacrylate (EGDMA) as core monomers and butyl acrylate (BA) and TAN as shell monomers. Nano core-shell spheres were manufactured by using BA, sodium styrenesulfonate (NASS), and EGDMA as core monomers, and using the same compositions as shell monomers. The effects of different core or shell monomers and the proportion of TAN on contact angle were discussed. The effects of mixture of two types of core-shell spheres on contact angle were also discussed.
Vedio-based optical contact angle meter, Scanning electron microscope (SEM), and Dynamic light scattering (DLS) were used to determine the characterization of core-shell spheres. Submicro and nano core-shell particles had uniform spherical shape and particle size 200~300 nm and 30~50 nm, respectively. The highest water contact angle of submicro and nano core-shell spheres were 126 and 112 degree, respectively. The highest oil contact angle of submicro and nano core-shell spheres were 20 and 64 degree, respectively. Finally, contact angle of amphiphobic surface manufactured by mixing process was between the two.
關鍵字(中) ★ 雙疏表面
★ 無乳化劑乳化聚合法
★ 1H, 1H, 2H, 2H-全氟辛醇丙烯酸酯
關鍵字(英) ★ amphiphobic surface
★ soap-free emulsion polymerization
★ 1H, 1H, 2H, 2H-perfluorooctyl acrylate
論文目次 目錄………………………………………………………………………i
圖目錄……………………………………………………………………iv
表目錄…………………………………………………………………vii
第一章 緒論……………………………………………………………1
1-1 雙疏的原理及機制……………………………………………1
1-2 雙疏現象的理論方程式………………………………………2
1-3 雙疏表面的製程方法…………………………………………4
1-4 疏水及疏油表面之文獻回顧…………………………………5
1-5 實驗目的………………………………………………………11
第二章 實驗……………………………………………………………15
2-1 實驗藥品……………………………………………………………15
2-2 實驗儀器……………………………………………………………17
2-3 實驗方法……………………………………………………………18
2-3-1 單體精製………………………………………………………18
2-3-2 製備次微米級和奈米級的高分子……………………………18
A. 以溶液聚合法的合成高分子平坦面所需的溶液……………18
B. 以無乳化劑乳化聚合法中的一步驟合成法合成次微米級或奈米級的高分子球………………………………………………………20
C. 以無乳化劑乳化聚合法中的兩步驟合成法合成次微米級或奈米級的核殼高分子球…………………………….……………………22
2-3-3 混合各類核殼高分子球之製備……………………………24
2-3-4 測試樣品之製備……………………………………………24
2-4 儀器分析…………………………………………………………24
2-4-1 動態光散射粒徑分析儀(DLS)測試條件……………………24
2-4-2 掃描式電子顯微鏡(SEM)測試條件…………………………25
2-4-3 影像式接觸角量測儀測試條件……………………………25
第三章 結果與討論……………………………………………………26
3-1 次微米球的合成與特性…………………………………………26
3-1-1 PSt次微米球的合成與特性…………………………………26
3-1-2 P(St-MAA)次微米球的合成與特性…………………………27
3-1-3 P(St-MMA)次微米球的合成與特性…………………………28
3-1-4 P(St-EGDMA)次微米球的合成與特性………………………29
3-2 具核殼結構之次微米球的合成與特性…………………………40
3-2-1 EGDMA添加量對核殼結構次微米球的影響…………………40
3-2-2 殼層組成對接觸角的影響…………………………………41
A.不同種類的高分子之平坦面接觸角比較…………………42
B.不同種類的殼層組成對接觸角的影響……………………42
C.不同種類的含氟殼層組成對接觸角的影響………………43
3-2-3 核殼次微米球之粒徑對接觸角的影響……………………44
3-2-4 不同殼層克數之核殼次微米球的合成與特性……………44
A.殼層為0.5克之核殼次微米球的合成與特性……………45
B.殼層為1克之核殼次微米球的合成與特性………………45
C.殼層為2克之核殼次微米球的合成與特性………………46
D.特性最佳之核殼次微米球的探討…………………………46
3-2-5 改變核心組成之核殼次微米球的合成與特性……………47
A.核心為7克之軟核殼次微米球的合成與特性……………47
B.核心為10克之軟核殼次微米球的合成與特性……………48
C.核心為15克之軟核殼次微米球的合成與特性……………48
3-2-6 具核殼結構之次微米球的混合與特性……………………49
A.以P(St-EGDMA)/P(BA-TAN)的核殼次微米球為混合主體之
特性…………………………………………………………50
a.S-SE7-BT15與S-BE7-BT15進行混合……………………50
b.S-SE7-BT15與S-BE10-BT20進行混合…………………51
c.S-SE7-BT15與S-BE15-BT20進行混合……………………51
B.以P(BA-EGDMA)/P(BA-TAN)的核殼次微米球為混合主體之
特性………………………………………………………52
a.S-BE7-BT15與S-SE7-BT15進行混合……………………52
b.S-BE10-BT20與S-SE7-BT15進行混合……………………53
c.S-BE15-BT20與S-SE7-BT15進行混合…………………53
d.S-BE15-BT20與S-BE10-BT20進行混合…………………54
3-3 奈米球的合成與特性……………………………………………91
3-3-1 P(BA-NASS)奈米球的合成與特性…………………………91
3-3-2 P(BA-NASS-EGDMA)奈米球的合成與特性…………………92
3-4 具核殼結構之奈米球的合成與特性……………………………97
3-4-1 不同殼層克數之核殼奈米球的合成與特性………………97
A. 殼層為0.5克之核殼奈米球的合成與特性…………………97
B. 殼層為1克之核殼奈米球的合成與特性……………………98
C. 殼層為2克之核殼奈米球的合成與特性……………………98
D. 特性最佳之核殼奈米球的探討………………………………99
3-4-2 改變核心組成之核殼奈米球的合成與特性………………100
A.核心為P(BMA-NASS-EGDMA)之硬核殼奈米球的合成與特
性…………………………………………………………100
B.核心為P(St-NASS-EGDMA)之硬核殼奈米球的合成與特
性…………………………………………………………101
3-4-3 具核殼結構之奈米球的混合與特性………………………101
A.以P(BA-NASS-EGDMA)/P(BA-TAN)的核殼軟奈米球為混合主
體之特性…………………………………………………102
a.N-BE7-BT5與N-BME7-BT5進行混合……………………102
b.N-BE7-BT5與N-SE7-BT5進行混合………………………102
3-5 具核殼結構之次微米球與奈米球的混合與特性……………115
3-5-1 以P(St-EGDMA)/P(BA-TAN)的核殼硬次微米球為混合主體之
特性…………………………………………………………115
A.S-SE7-BT15與N-BE7-BT5進行混合……………………115
B.S-SE7-BT15與N-BME7-BT5進行混合……………………116
C.S-SE7-BT15與N-SE7-BT5進行混合………………………117
3-5-2 以P(BA-EGDMA)/P(BA-TAN)的核殼軟次微米球為混合主體之
特性…………………………………………………………117
A.S-BE15-BT20與N-BE7-BT5進行混合……………………118
B.S-BE15-BT20與N-SE7-BT5進行混合……………………118
3-5-3 以P(BA-NASS-EGDMA)/P(BA-TAN)的核殼軟奈米球為混合主
體之特性……………………………………………………119
A.N-BE7-BT5與S-SE7-BT15進行混合………………………119
第四章 結論…………………………………………………………138
參考文獻………………………………………………………………139
參考文獻 [1] P. Ragesh, V. Anand Ganesh, S.V. Nair, A.S. Nair, A review on ‘self-cleaning and multifunctional materials’. Journal of Materials Chemistry A 2014, 2 (36), 14773.
[2] T. Darmanin, F. Guittard, Recent advances in the potential applications of bioinspired superhydrophobic materials. J. Mater. Chem. A 2014, 2 (39), 16319-16359.
[3] Z. Chu, S. Seeger, Superamphiphobic surfaces. Chem Soc Rev 2014, 43 (8), 2784-2798.
[4] W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202 (1), 1-8.
[5] A. Tuteja, W. Choi, M. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley, R.E. Cohen, Designing superoleophobic surfaces. Science 2007, 318 (5856), 1618-1622.
[6] R.N. Wenzel, Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry 1936, 28 (8), 988-994.
[7] A. Cassie, S. Baxter, Wettability of porous surfaces. Transactions of the Faraday Society 1944, 40, 546-551.
[8] T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Super-water-repellent fractal surfaces. Langmuir 1996, 12 (9), 2125-2127.
[9] K. Tsujii, T. Yamamoto, T. Onda, S. Shibuichi, Super oil‐repellent surfaces. Angewandte Chemie International Edition in English 1997, 36 (9), 1011-1012.
[10] J. Xi, L. Feng, L. Jiang, A general approach for fabrication of superhydrophobic and superamphiphobic surfaces. Applied Physics Letters 2008, 92 (5), 053102.
[11] T. Darmanin, F. Guittard, One-pot method for build-up nanoporous super oil-repellent films. J Colloid Interface Sci 2009, 335 (1), 146-149.
[12] R. Saraf, H.J. Lee, S. Michielsen, J. Owens, C. Willis, C. Stone, E. Wilusz, Comparison of three methods for generating superhydrophobic, superoleophobic nylon nonwoven surfaces. Journal of Materials Science 2011, 46 (17), 5751-5760.
[13] H. Wang, Y. Xue, T. Lin, One-step vapour-phase formation of patternable, electrically conductive, superamphiphobic coatings on fibrous materials. Soft Matter 2011, 7 (18), 8158.
[14] B. Leng, Z. Shao, G. de With, W. Ming, Superoleophobic cotton textiles. Langmuir 2009, 25 (4), 2456-2460.
[15] Z. He, M. Ma, X. Lan, F. Chen, K. Wang, H. Deng, Q. Zhang, Q. Fu, Fabrication of a transparent superamphiphobic coating with improved stability. Soft Matter 2011, 7 (14), 6435.
[16] J. Yang, Z. Zhang, X. Xu, X. Men, X. Zhu, X. Zhou, Superoleophobic textured aluminum surfaces. New Journal of Chemistry 2011, 35 (11), 2422.
[17] H. Kim, K. Noh, C. Choi, J. Khamwannah, D. Villwock, S. Jin, Extreme superomniphobicity of multiwalled 8 nm TiO2 nanotubes. Langmuir 2011, 27 (16), 10191-10196.
[18] X. Zhu, Z. Zhang, X. Xu, X. Men, J. Yang, X. Zhou, Q. Xue, Facile fabrication of a superamphiphobic surface on the copper substrate. J Colloid Interface Sci 2012, 367 (1), 443-449.
[19] M. Im, H. Im, J.-H. Lee, J.-B. Yoon, Y.-K. Choi, A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate. Soft Matter 2010, 6 (7), 1401.
[20] A. Susarrey-Arce, Á.G. Marín, S. Schlautmann, L. Lefferts, J.G.E. Gardeniers, A. van Houselt, One-step sculpting of silicon microstructures from pillars to needles for water and oil repelling surfaces. Journal of Micromechanics and Microengineering 2013, 23 (2), 025004.
[21] X. Deng, L. Mammen, H.-J. Butt, D. Vollmer, Candle soot as a template for a transparent robust superamphiphobic coating. Science 2012, 335 (6064), 67-70.
[22] T. Fujii, Y. Aoki, H. Habazaki, Fabrication of super-oil-repellent dual pillar surfaces with optimized pillar intervals. Langmuir 2011, 27 (19), 11752-11756.
[23] X. Xu, Z. Zhang, F. Guo, J. Yang, X. Zhu, X. Zhou, Q. Xue, Superamphiphobic self-assembled monolayer of thiol on the structured Zn surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 396, 90-95.
[24] H. Jin, M. Kettunen, A. Laiho, H. Pynnonen, J. Paltakari, A. Marmur, O. Ikkala, R.H. Ras, Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 2011, 27 (5), 1930-1934.
[25] D. Xiong, G. Liu, L. Hong, E.S. Duncan, Superamphiphobic diblock copolymer coatings. Chemistry of Materials 2011, 23 (19), 4357-4366.
[26] H. Jin, X. Tian, O. Ikkala, R.H. Ras, Preservation of superhydrophobic and superoleophobic properties upon wear damage. ACS applied materials & interfaces 2013, 5 (3), 485-488.
[27] J. Yang, Z. Zhang, X. Men, X. Xu, X. Zhu, A simple approach to fabricate superoleophobic coatings. New J. Chem. 2011, 35 (3), 576-580.
[28] R. Campos, A.J. Guenthner, A.J. Meuler, A. Tuteja, R.E. Cohen, G.H. McKinley, T.S. Haddad, J.M. Mabry, Superoleophobic surfaces through control of sprayed-on stochastic topography. Langmuir 2012, 28 (25), 9834-9841.
[29] X. Wang, H. Hu, Q. Ye, T. Gao, F. Zhou, Q. Xue, Superamphiphobic coatings with coralline-like structure enabled by one-step spray of polyurethane/carbon nanotube composites. Journal of Materials Chemistry 2012, 22 (19), 9624.
[30] D. Han, A.J. Steckl, Superhydrophobic and oleophobic fibers by coaxial electrospinning. Langmuir 2009, 25 (16), 9454-9462.
[31] S. Srinivasan, S.S. Chhatre, J.M. Mabry, R.E. Cohen, G.H. McKinley, Solution spraying of poly(methyl methacrylate) blends to fabricate microtextured, superoleophobic surfaces. Polymer 2011, 52 (14), 3209-3218.
[32] S. Pan, A.K. Kota, J.M. Mabry, A. Tuteja, Superomniphobic surfaces for effective chemical shielding. Journal of the American Chemical Society 2012, 135 (2), 578-581.
[33] W.K. Cho, S. Park, S. Jon, I.S. Choi, Water-repellent coating: formation of polymeric self-assembled monolayers on nanostructured surfaces. Nanotechnology 2007, 18 (39), 395602.
[34] D. Xiong, G. Liu, J. Zhang, S. Duncan, Bifunctional core–shell–corona particles for amphiphobic coatings. Chemistry of Materials 2011, 23 (11), 2810-2820.
[35] E. Yoshida, Preparation of micro- and nanospheres with superamphiphobic surfaces by dispersion polymerization. Colloid and Polymer Science 2011, 290 (6), 525-530.
[36] X.-M. Li, T. He, M. Crego-Calama, D.N. Reinhoudt, Conversion of a metastable superhydrophobic surface to an ultraphobic surface. Langmuir 2008, 24 (15), 8008-8012.
[37] L. Xu, R.G. Karunakaran, J. Guo, S. Yang, Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles. ACS applied materials & interfaces 2012, 4 (2), 1118-1125.
[38] A. Qu, X. Wen, P. Pi, J. Cheng, Z. Yang, Preparation of hybrid film with superhydrophobic surfaces based on irregularly structure by emulsion polymerization. Applied Surface Science 2007, 253 (24), 9430-9434.
[39] C.-T. Hsieh, F.-L. Wu, W.-Y. Chen, Superhydrophobicity and superoleophobicity from hierarchical silica sphere stacking layers. Materials Chemistry and Physics 2010, 121 (1-2), 14-21.
[40] A. Das, T.M. Schutzius, I.S. Bayer, C.M. Megaridis, Superoleophobic and conductive carbon nanofiber/fluoropolymer composite films. Carbon 2012, 50 (3), 1346-1354.
[41] B.P. Dyett, A.H. Wu, R.N. Lamb, Toward Superhydrophobic and Durable Coatings: Effect of Needle vs Crater Surface Architecture. ACS applied materials & interfaces 2014, 6 (12), 9503-9507.
[42] H. Minami, Y. Mizuta, T. Suzuki, Preparation of raspberry-like polymer particles by a heterocoagulation technique utilizing hydrogen bonding interactions between steric stabilizers. Langmuir 2012, 29 (2), 554-560.
[43] J. Wang, X. Yang, Synthesis of core-corona polymer hybrids with a raspberry-like structure by the heterocoagulated pyridinium reaction. Langmuir 2008, 24 (7), 3358-3364.
[44] A. Telford, B. Hawkett, C. Such, C. Neto, Mimicking the wettability of the rose petal using self-assembly of waterborne polymer particles. Chemistry of Materials 2013, 25 (17), 3472-3479.
[45] W. Jiang, C.M. Grozea, Z. Shi, G. Liu, Fluorinated raspberry-like polymer particles for superamphiphobic coatings. ACS applied materials & interfaces 2014, 6 (4), 2629-2638.
[46] S. Mehlhase, C.G. Schäfer, J. Morsbach, L. Schmidt, R. Klein, H. Frey, M. Gallei, Vinylphenylglycidyl ether-based colloidal architectures: high-functionality crosslinking reagents, hybrid raspberry-type particles and smart hydrophobic surfaces. RSC Adv. 2014, 4 (78), 41348-41352.
指導教授 陳暉(Hui Chen) 審核日期 2016-6-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明