博碩士論文 103324017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.142.250.99
姓名 林建甫(Jian-Fu Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 富含氮奈米碳材製備與拉曼光譜增強基材之應用
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用
★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用
★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 首先本研究以聚4乙烯吡啶(poly(4-vinylpyridine), P4VP)經熱燒結後製備出富含氮碳材,將其應用於作為表面拉曼光譜訊號增強(surface-enhanced Raman scattering, SERS)基材後,觀察到其增強訊號的能力良好。探討聚4乙烯吡啶經一系列熱燒結溫度下製備樣品的氮摻雜組態後,發現氮組態中的四級氮(graphitic-N)比例隨燒結溫度升高而增加,此時最高占據分子軌域和最低未占據分子軌域間能隙(HOMO-LUMO gap)降低,電荷傳遞能力(charge transfer)提升,此時四級氮周圍的碳上有很高的區域電子雲密度(charge density)使富含氮碳材帶有更高的極性,則富含氮碳材與分子間的偶極-偶極力(dipole-dipole interaction)也會提升,最終作為表面拉曼光譜訊號增強基材的能力也跟著提升。

接下來由於聚4乙烯吡啶(P4VP)的熱燒結溫度已達臨界點,為了更進一步製備出具更高表面拉曼光譜訊號增強能力的基材,即以聚苯乙烯-聚4乙烯吡啶(poly(styrene-block-4-vinylpyridine), PS-b-P4VP)製備微胞薄膜後,經熱燒結製備一系列富含氮中孔碳材。期望藉由表面積提升,製備出具更高表面拉曼光譜訊號增強能力的基材。藉由低掠角小角度X光散射儀(grazing-incidence small-angle X-ray scattering, GISAXS)量測平面上X光散射 (1D in-plane)強度,再配合Igor Pro軟體以相對應的X光散射關係式進行擬合後,發現具有更高表面積的富含氮中孔碳材由於吸附表面的分子越多且進行分子與基材間電荷傳遞的表面積越大,表面拉曼光譜訊號增強能力也隨之增強,最終得到具有明顯表面積提升的富含氮中孔碳材其表面拉曼光譜訊號增強能力明顯較富含氮碳材為好的結果。

最後探討碘摻雜於富含氮中孔碳材後提升表面拉曼光譜訊號增強能力的可能性。以聚苯乙烯-聚2乙烯吡啶(poly(styrene-block-2-vinylpyridine), PS-b-P2VP)製備微胞薄膜後,分別以熱燒結前摻雜碘離子與熱燒結後摻雜碘離子兩種製程製備碘摻雜富含氮中孔碳材。發現到碘離子摻雜後形成碘氮鍵結使周圍碳材帶有更強的正電荷密度而更容易吸引電子而提升電荷傳遞能力,同時碘離子的極性也提升了分子與基材間的偶極-偶極力,使表面拉曼光譜訊號增強能力更好。而對於形成碳材前摻雜碘離子的樣品來說,除了碘離子的貢獻外,碘摻雜後的樣品熱裂解溫度下降而導致在相同溫度下燒結時,碳化程度較未摻雜的樣品提升也是使表面拉曼光譜訊號增強能力更好的原因之一。
摘要(英) Nitrogen-enriched carbon materials could be fabricated by thermal pyrolysis of poly(4-vinylpyridine) thin layers. By using the nitrogen-enriched carbon materials as surface-enhanced Raman scattering substrates, the excellent enhancement of Raman signal is observed. From the analysis of nitrogen configurations for nitrogen species for nitrogen-enriched carbon materials, the proportion of graphitic-N depends on pyrolysis temperature. Due to the fact that the presence of graphitic-N could reduce the band gap, graphitic-N could favor charge transfer between the substrate and the molecule. Due to different electronegativity between carbon and nitrogen, positive high charge densities could be present on the carbons neighboring to graphitic-N, which may result in dipole-dipole interactions between the substrate and the molecule. As a result, the ability of surface-enhanced Raman scattering substrate can be finely determined by pyrolysis temperature.

Considering that porous carbon nanomaterials have high surface areas, nitrogen-enriched porous carbon nanomaterials were fabricated through thermal pyrolysis of poly(styrene-block-4-vinylpyridine) diblock copolymers. With grazing-incidence small-angle X-ray scattering characterizations and model simulations for nitrogen-enriched porous carbon nanomaterials templated by PS-b-P4VP, the surface area of hierachical pores within nitrogen-enriched porous carbon nanomaterials was estimated. The increased surface area of copolymer templated nitrogen-enriched porous carbon could increase the capacity of molecular adsorption. More surface area equals to higher charge transfer ability. As a result, more surface area equals to higher ability of surface-enhanced Raman scattering substrate.

In the last part, iodine doping was applied to improve the ability of surface-enhanced Raman scattering substrate. Iodine-doped nitrogen-enriched porous carbon nanomaterials were fabricated by two approaches. The first approach is that nitrogen-enriched and iodine-doped porous carbon nanomaterials were fabricated by pyrolyzing poly(styrene-block-2-vinylpyridine) followed by iodine doping. The second approach is that the two processes were switched; iodine doping was first imposed on PS-b-P2VP block copolymers and then thermal pyrolysis was carried out. Both approaches could successfully generate nitrogen-enriched and iodine-doped porous carbon nanomaterials, which show improved Raman scattering intensity enhancement. From the analysis of nitrogen configurations, iodine-nitrogen bonds were found. The iodine-nitrogen bonds could induce more positive charges on carbons that promote the charge transfer ability between substrate and molecule. The polarity of iodine promotes dipole-dipole interactions between substrate and molecule. As a result, iodine doping indeed improves the ability of surface-enhanced Raman scattering substrate. Besides, for the second approach, carbonization could generate nanomaterials with high crystallinity. As a result such carbon nanomaterials show improvement of Raman scattering intensity of adsorbed dye molecules.
關鍵字(中) ★ 富含氮奈米碳材
★ 拉曼光譜增強基材
關鍵字(英)
論文目次 摘要 I
Abstract III
致謝 VI
目錄 VII
圖目錄 X
表目錄 XVI
第1章 序論 1
1-1 拉曼光譜學 1
1-2 表面拉曼光譜訊號增強原理 3
1-2-1 電磁場增強機制 4
1-2-2 化學增強機制 5
1-3 石墨烯作為表面拉曼光譜訊號增強基材 7
1-4 以氮摻雜石墨烯作為表面拉曼光譜訊號增強基材 10
1-4-1 氮摻雜石墨烯作為表面拉曼光譜訊號增強基材能 10
1-4-2 氮組態對表面拉曼光譜訊號增強影響 12
1-5 含氮高分子製備氮摻雜石墨 14
1-6 表面積與其他元素摻雜對表面拉曼光譜訊號增強影響 18
1-6-1 表面積對表面拉曼光譜訊號增強影響 18
1-6-2 其他元素摻雜對表面拉曼光譜訊號增強影響 20
1-7 實驗動機 22
第2章 實驗方法 25
2-1 實驗藥品與基材 25
2-2 樣品製備 28
2-2-1 基材清潔 28
2-2-2 製備富含氮碳材 28
2-2-3 製備富含氮中孔碳材 28
2-2-4 製備碘摻雜富含氮中孔碳材 29
2-3 實驗使用儀器 30
2-3-1 顯微影像觀察 31
2-3-2 低掠角小角度X光散射訊號分析與擬合結構資訊 32
2-3-3 熱重分析儀量測燒結過程重量變化 32
2-3-4 紫外光可見光光譜儀 33
2-3-5 拉曼光譜儀 33
2-3-6 X射線光電子能譜儀 34
2-3-7 拉曼光譜儀訊號計算增強因子分析 34
2-3-8 從紫外光可見光光譜儀量測結果計算HOMO-LUMO gap 35
第3章 結果與討論 37
3-1 富含氮碳材製備與表面拉曼光譜訊號增強能力 37
3-1-1 富含氮碳材製備與組成 37
3-1-2 富含氮碳材作為表面拉曼光譜訊號增強基材能力 44
3-1-3 各富含氮碳材中四級氮比例與電荷傳遞能力關係 47
3-1-4 燒結溫度與表面拉曼光譜訊號增強能力關係 51
3-2 富含氮中孔碳材製備與表面拉曼光譜訊號增強能力 56
3-2-1 富含氮中孔碳材製備與形貌 56
3-2-2 富含氮中孔碳材作為表面拉曼光譜訊號增強基材能力 60
3-2-3 表面積與表面拉曼光譜訊號增強能力關係 62
3-3 碘摻雜富含氮中孔碳材與表面拉曼光譜訊號增強能力 73
3-3-1 碘摻雜富含氮中孔碳材製備 73
3-3-2 碘摻雜富含氮中孔碳材作為表面拉曼光譜訊號增強基材能力 78
3-3-3 碘摻雜富含氮中孔碳材組成與表面拉曼光譜訊號增強能力關係 82
結論 91
參考資料 93
附錄 100
參考文獻 1. Gardiner, D., Graves, R., “Practical Raman Spectroscopy”, Springer-Verlag, 1989
2. Placzek, G., “Rayleigh Streeung und Raman Effekt”, In: Hdb. der Radiologie, 1934, VI, 2, 209
3. Murphy, S., Huang, L., Kamat, P., “Charge-transfer Complexation and Excited-state Interactions in Porphyrin-silver Nanoparticle Hybrid Structures” , J. Phys. Chem. C, 2011, 115, 46, 22761–22769
4. Fleischmann, M., Hendra, P. J., McQuillan, A. J., “Raman Spectra of Pyridine Adsorbed at a Silver Electrode”, Chem. Phys. Lett., 1974, 26, 163-166
5. Otto, A., Mrozek, I., Grabhorn, H., Akemann, W., “Surface-enhanced Raman Scattering”, J. Phys. Condens. Matter, 1992, 4, 1143-1212
6. Campion, A., Kambhampati, P., “Surface-enhanced Raman Scattering”, Chem. Soc. Rev., 1998, 27, 241-250
7. McLellan, J., Li Z., Siekkinen A., Xia Y., “The SERS Activity of a Supported Ag Nanocube Strongly Depends on Its Orientation Relative to Laser Polarization”, Nano Lett., 2007, 7, 4, 1013-1017
8. Taylor, C., Pemberton, J., Goodman, G., Schoenfisch, M., “Surface Enhancement Factors for Ag and Au Surfaces Relative to Pt Surfaces for Monolayers of Thiophenol”, Applied Spectroscopy, 1999, 53, 10, 1212-1221
9. Bottcher, C., “In Theory of Electric Polarization”, Elsevier: Amsterdam, 1973, 17-26
10. Yu, X., Cai, H., Zhang, W., Li, X., Pan, N., Luo, Y., Wang, X., Hou, J. G., “Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets”, ACS Nano, 2011, 5, 2, 952-958
11. Xie, L., Ling, X., Fang, Y., Zhang, J., Liu, Z., “Graphene as a Substrate to Suppress Fluorescence in Resonance Raman Spectroscopy”, J. Am. Chem. Soc., 2009, 131, 9890-9891
12. Ling, X., Xie, L., Fang, Y., Xu, H., Zhang, H., Kong, J., Dresselhaus, M. S., Zhang, J., Liu, Z., “Can Graphene be used as a Substrate for Raman Enhancement”, Nano Lett., 2010, 10, 553-561
13. Rana, F., “Graphene Terahertz Plasmon Oscillators”, IEEE Trans. Nanotechnol., 2008, 7, 91–99
14. Lv, R., Li, Q., Botello-Me´ndez, A., Hayashi, T., Wang, B., Berkdemir, A., Hao, Q., Elı´as, A., Cruz-Silva, R., Gutie´rrez, H., Kim, Y., Muramatsu, H., Zhu, J., Endo, M., Terrones, H., Charlier, J., Pan, M., Terrones, M., “Nitrogen-doped Graphene: Beyond Single Substitution and Enhanced Molecular Sensing”, Scientific Reports, 2012, 2, 586
15. Xu, H., Xie, L., Zhang, H., Zhang, J., “Effect of Graphene Fermi Level on the Raman Scattering Intensity of Molecules on Graphene”, ACS Nano, 2011, 5, 7, 5338-5344
16. Wu, P., Qian, Y., Du, P., Zhang, H., Cai, C., “Facile Synthesis of Nitrogen-doped Graphene for Measuring the Releasing Process of Hydrogen Peroxide from Living Cells”, Journal of Materials Chemistry, 2012, 22, 6402-6412
17. Hung, C., Yu, N., Chen, C., Wu, P., Han, X., Kao, Y., Liu, T., Chu, Y., Deng, F., Zheng, A., Liu, S., “Highly Nitrogen-doped Mesoscopic Carbons as Efficient Metal-free Electrocatalysts for Oxygen Reduction Reactions”, J. Mater. Chem. A, 2014, 2, 20030-20037
18. Forster, S., Antonietti, M., “Amphiphilic Block Copolymers in Structure-Controlled Nanomaterial Hybrids”, Adv. Mater., 1998, 10, 195-217
19. Cheng, J., Ross, C., Chan, V., Thomas, E., Lammertink, R., Vancso, G., “Formation of a Cobalt Magnetic Dot Array via Block Copolymer Lithography”, Advanced Materials, 2001, 13, 1174-1178
20. Lynd, N., Meuler, A., Hillmyer, M., “Polydispersity and Block Copolymer Self-assembly”, Progress in Polymer Science, 2008, 33, 875-893
21. Hillmyer, M., Lipic, P., Hajduk, D., Almdal, K., Bates, F., “Self-Assembly and Polymerization of Epoxy Resin-Amphiphilic Block Copolymer Nanocomposites”, J. Am. Chem. Soc. 1997, 119, 2749
22. Meng, Y., Gu, D., Zhang, F., Shi, Y., Cheng, L., Feng, D., Wu, Z., Chen, Z., Wan, Y., Stein, A., Zhao, D., “A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organic-organic Self-assembly”, Chem. Mater., 2006, 18, 4447-4464
23. Zhong, M., Kim, E., McGann, J., Chun, S., Whitacre, J., Jaroniec, M., Matyjaszewski, K., Kowalewski, T., “Electrochemically Active Nitrogen-Enriched Nanocarbons with Well-Defined Morphology Synthesized by Pyrolysis of Self-Assembled Block Copolymer”, Journal of the American Chemical Society, 2012, 134, 14846-14857
24. Ling, X., Zhang, J., “First-Layer Effect in Graphene-Enhanced Raman
Scattering”, Small, 2010, 6, 18, 2020-2025
25. Chan, S., Kwon, S., Koo, T., Lee, L., Berlin, A., “Surface-Enhanced Raman Scattering of Small Molecules from Silver-Coated Silicon Nanopores”, Adv. Mater., 2003, 15, 19, 1595-1598
26. Qian, L., Yan, X., Fujita, T., Inoue, A., Chen, M., “Surface Enhanced Raman Scattering of Nanoporous gold: Smaller Pore Sizes Stronger Enhancements”, Applied Physics Letters, 2007, 90, 153120
27. Choudhury, D., Das, B., Sarma, D., Rao, C., “XPS Evidence for Molecular Charge-Transfer Doping of Graphene”, Chem. Phys. Lett., 2010, 497, 66–69.
28. Huh, S., Park, J., Kim, Y., Kim, K., Hong, B., Nam, J., “UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering”, ACS Nano, 2011, 5, 12, 9799-9806
29. Yao, Z., Nie, H., Yang, Z., Zhou, X., Liu, Z., Huang, S., “Catalyst-free synthesis of Iodine-doped Graphene via a Facile Thermal Anneal Process and its Use for Electrocatalytic Oxygen Reduction in an Alkaline Medium”, Chem. Commun., 2012, 48, 1027–1029
30. Šimek, P., Klímová, K., Sedmidubský, D., Jankovský, O., Pumerab, M., Sofer, Z., “Towards Graphene Iodide: Iodination of Graphite Oxide”, Nanoscale, 2015, 7, 261-270
31. Harnish, B., Robinson, J., Pei, Z., Ramstrom, O., Yan, M., “UV-Cross-Linked Poly(vinylpyridine) Thin Films as Reversibly Responsive Surfaces”, Chem., Mater., 2005, 17, 4092-4096
32. Maldonado, S., Morin, S., Stevenson, K, “Structure, Composition, and Chemical Reactivity of Carbon Nanotubes by Selective Nitrogen Doping”, Carbon, 2006, 44, 1429-1437
33. Tuinstra, F., Koenig, J., “Raman Spectrum of Graphite”, The Journal of Chemical Physics, 1970, 53, 1126-1130
34. Pimenta, M., Dresselhaus, G., Dresselhaus, M., Cancado, L., Jorio, A., Saito, R., Studying Disorder in Graphite-based Systems by Raman Spectroscopy”, Physical Chemistry Chemical Physics, 2007, 9, 1276-1290
35. Schniepp, H., Li, J., McAllister, M., Sai, H., Herrera-Alonso, M., Adamson, D., Pruı¨homme, R., Car, R., Saville, D., Aksay, I., “Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide”, J. Phys.Chem. B, 2006, 110, 8535-8539
36. Kovalevski, V., Safronov, A., “Pyrolysis of Hollow Carbon on metal Catalyst”, Carbon, 1998, 36, 7-8, 963-968
37. Arrigo, R., Havecker, M., Schlogl, R., Su, D., “Dynamic Surface Rearrangement and Thermal Stability of Nitrogen Functional Groups on Carbon Nanotubes”, Chemical Communications, 2008, 4891-4893
38. Shao, Y., Zhang, S., Engelhard, M., Li, G., Shao, G., Wang, Y., Liu, J., Aksay, I., Lin, Y., “Nitrogen-doped Graphene and its Electrochemical Applications”, Journal of Materials Chemistry, 2010, 20, 7491-7496
39. Yeh, T., Teng, C., Chen, S., Teng, H., “Nitrogen-Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water-Splitting under Visible Light Illumination”, Adv. Mater., 2014, 26, 3297–3303
40. Sun, Y., Huang, W., Liou, J., Lu, Y., Shih, K., Lin, C., Cheng, S., “Conversion from Self-assembled Block Copolymer Nanodomains to Carbon Nanostructures with Welldefined Morphology”, RSC Adv., 2015, 5, 105774–105784
41. Lu, Y., Liou, J., Lin, C., Sun, Y., “Electrocatalytic Activity of a Nitrogen-enriched Mesoporous Carbon Framework and its Hybrids with Metal Nanoparticles Fabricated Through the Pyrolysis of Block Copolymers”, RSC Adv., 2015, 5, 105760–105773
42. Aizawa, M., Buriak, J., “Block Copolymer-Templated Chemistry on Si, Ge, InP, and GaAs Surfaces”, J. Am. Chem. Soc., 2005, 127, 8932-9833
43. Aizawa, M., Buriak, J., “Block Copolymer Templated Chemistry for the Formation of Metallic Nanoparticle Arrays on Semiconductor Surfaces”, Chem. Mater., 2007, 19, 5090-5101
44. Kline, S., “Reduction and Analysis of SANS and USANS Data Using IGOR Pro”, J. Appl. Crystallogr., 2006, 39, 895-900
45. Roe, R., “Methods of X-ray and neutron scattering in polymer science”, Oxford
University Press: New York, 2000
46. Beaucage, G., “Approximations Leading to a Unified Exponential/Power-Law
Approach to Small-Angle Scattering”, J. Appl. Crystallogr., 1995, 28, 717-728.
47. Wang, S., Sun, Y., Chiang, A., Hung, H., Chen, M., Wood, K., “Carboxylic Acid-Directed Clustering and Dispersion of ZrO2 Nanoparticles in Organic Solvents: A Study by Small-Angle X-ray/Neutron Scattering and NMR”, J.Phys. Chem. C., 2011, 115, 11941-11950
48. Abdo, H., Khalil, K., Al-Deyab, S., Altaleb, H., Sherif, E.-S., “Antibacterial Effect of Carbon Nanofibers Containing Ag Nanoparticles”, Fibers and Polymers, 2013, 14, 1985-1992
49. Santana, A., Noda, L., Pires, A., Bertolino, J., “Poly (4-vinylpyridine)/cupric Salt Complexes: Spectroscopic and Thermal Properties”, Polymer Testing, 2004, 23, 839-845
50. Zeng, Z., Ko, T., “Structure–Conductivity Relationships of Iodine-Doped
Polyaniline”, Journal of Polymer Science: Part B: Polymer Physics, 1997, 35, 1993–2001
51. Choi, C., Chung, M., Kwon, H., Parka, S., Woo, S., “B, N- and P, N-doped Graphene as Highly Active Catalysts for Oxygen Reduction Reactions in Acidic Media”, J. Mater. Chem. A, 2013, 1, 3694–3699
指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2016-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明