參考文獻 |
1. Gardiner, D., Graves, R., “Practical Raman Spectroscopy”, Springer-Verlag, 1989
2. Placzek, G., “Rayleigh Streeung und Raman Effekt”, In: Hdb. der Radiologie, 1934, VI, 2, 209
3. Murphy, S., Huang, L., Kamat, P., “Charge-transfer Complexation and Excited-state Interactions in Porphyrin-silver Nanoparticle Hybrid Structures” , J. Phys. Chem. C, 2011, 115, 46, 22761–22769
4. Fleischmann, M., Hendra, P. J., McQuillan, A. J., “Raman Spectra of Pyridine Adsorbed at a Silver Electrode”, Chem. Phys. Lett., 1974, 26, 163-166
5. Otto, A., Mrozek, I., Grabhorn, H., Akemann, W., “Surface-enhanced Raman Scattering”, J. Phys. Condens. Matter, 1992, 4, 1143-1212
6. Campion, A., Kambhampati, P., “Surface-enhanced Raman Scattering”, Chem. Soc. Rev., 1998, 27, 241-250
7. McLellan, J., Li Z., Siekkinen A., Xia Y., “The SERS Activity of a Supported Ag Nanocube Strongly Depends on Its Orientation Relative to Laser Polarization”, Nano Lett., 2007, 7, 4, 1013-1017
8. Taylor, C., Pemberton, J., Goodman, G., Schoenfisch, M., “Surface Enhancement Factors for Ag and Au Surfaces Relative to Pt Surfaces for Monolayers of Thiophenol”, Applied Spectroscopy, 1999, 53, 10, 1212-1221
9. Bottcher, C., “In Theory of Electric Polarization”, Elsevier: Amsterdam, 1973, 17-26
10. Yu, X., Cai, H., Zhang, W., Li, X., Pan, N., Luo, Y., Wang, X., Hou, J. G., “Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets”, ACS Nano, 2011, 5, 2, 952-958
11. Xie, L., Ling, X., Fang, Y., Zhang, J., Liu, Z., “Graphene as a Substrate to Suppress Fluorescence in Resonance Raman Spectroscopy”, J. Am. Chem. Soc., 2009, 131, 9890-9891
12. Ling, X., Xie, L., Fang, Y., Xu, H., Zhang, H., Kong, J., Dresselhaus, M. S., Zhang, J., Liu, Z., “Can Graphene be used as a Substrate for Raman Enhancement”, Nano Lett., 2010, 10, 553-561
13. Rana, F., “Graphene Terahertz Plasmon Oscillators”, IEEE Trans. Nanotechnol., 2008, 7, 91–99
14. Lv, R., Li, Q., Botello-Me´ndez, A., Hayashi, T., Wang, B., Berkdemir, A., Hao, Q., Elı´as, A., Cruz-Silva, R., Gutie´rrez, H., Kim, Y., Muramatsu, H., Zhu, J., Endo, M., Terrones, H., Charlier, J., Pan, M., Terrones, M., “Nitrogen-doped Graphene: Beyond Single Substitution and Enhanced Molecular Sensing”, Scientific Reports, 2012, 2, 586
15. Xu, H., Xie, L., Zhang, H., Zhang, J., “Effect of Graphene Fermi Level on the Raman Scattering Intensity of Molecules on Graphene”, ACS Nano, 2011, 5, 7, 5338-5344
16. Wu, P., Qian, Y., Du, P., Zhang, H., Cai, C., “Facile Synthesis of Nitrogen-doped Graphene for Measuring the Releasing Process of Hydrogen Peroxide from Living Cells”, Journal of Materials Chemistry, 2012, 22, 6402-6412
17. Hung, C., Yu, N., Chen, C., Wu, P., Han, X., Kao, Y., Liu, T., Chu, Y., Deng, F., Zheng, A., Liu, S., “Highly Nitrogen-doped Mesoscopic Carbons as Efficient Metal-free Electrocatalysts for Oxygen Reduction Reactions”, J. Mater. Chem. A, 2014, 2, 20030-20037
18. Forster, S., Antonietti, M., “Amphiphilic Block Copolymers in Structure-Controlled Nanomaterial Hybrids”, Adv. Mater., 1998, 10, 195-217
19. Cheng, J., Ross, C., Chan, V., Thomas, E., Lammertink, R., Vancso, G., “Formation of a Cobalt Magnetic Dot Array via Block Copolymer Lithography”, Advanced Materials, 2001, 13, 1174-1178
20. Lynd, N., Meuler, A., Hillmyer, M., “Polydispersity and Block Copolymer Self-assembly”, Progress in Polymer Science, 2008, 33, 875-893
21. Hillmyer, M., Lipic, P., Hajduk, D., Almdal, K., Bates, F., “Self-Assembly and Polymerization of Epoxy Resin-Amphiphilic Block Copolymer Nanocomposites”, J. Am. Chem. Soc. 1997, 119, 2749
22. Meng, Y., Gu, D., Zhang, F., Shi, Y., Cheng, L., Feng, D., Wu, Z., Chen, Z., Wan, Y., Stein, A., Zhao, D., “A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organic-organic Self-assembly”, Chem. Mater., 2006, 18, 4447-4464
23. Zhong, M., Kim, E., McGann, J., Chun, S., Whitacre, J., Jaroniec, M., Matyjaszewski, K., Kowalewski, T., “Electrochemically Active Nitrogen-Enriched Nanocarbons with Well-Defined Morphology Synthesized by Pyrolysis of Self-Assembled Block Copolymer”, Journal of the American Chemical Society, 2012, 134, 14846-14857
24. Ling, X., Zhang, J., “First-Layer Effect in Graphene-Enhanced Raman
Scattering”, Small, 2010, 6, 18, 2020-2025
25. Chan, S., Kwon, S., Koo, T., Lee, L., Berlin, A., “Surface-Enhanced Raman Scattering of Small Molecules from Silver-Coated Silicon Nanopores”, Adv. Mater., 2003, 15, 19, 1595-1598
26. Qian, L., Yan, X., Fujita, T., Inoue, A., Chen, M., “Surface Enhanced Raman Scattering of Nanoporous gold: Smaller Pore Sizes Stronger Enhancements”, Applied Physics Letters, 2007, 90, 153120
27. Choudhury, D., Das, B., Sarma, D., Rao, C., “XPS Evidence for Molecular Charge-Transfer Doping of Graphene”, Chem. Phys. Lett., 2010, 497, 66–69.
28. Huh, S., Park, J., Kim, Y., Kim, K., Hong, B., Nam, J., “UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering”, ACS Nano, 2011, 5, 12, 9799-9806
29. Yao, Z., Nie, H., Yang, Z., Zhou, X., Liu, Z., Huang, S., “Catalyst-free synthesis of Iodine-doped Graphene via a Facile Thermal Anneal Process and its Use for Electrocatalytic Oxygen Reduction in an Alkaline Medium”, Chem. Commun., 2012, 48, 1027–1029
30. Šimek, P., Klímová, K., Sedmidubský, D., Jankovský, O., Pumerab, M., Sofer, Z., “Towards Graphene Iodide: Iodination of Graphite Oxide”, Nanoscale, 2015, 7, 261-270
31. Harnish, B., Robinson, J., Pei, Z., Ramstrom, O., Yan, M., “UV-Cross-Linked Poly(vinylpyridine) Thin Films as Reversibly Responsive Surfaces”, Chem., Mater., 2005, 17, 4092-4096
32. Maldonado, S., Morin, S., Stevenson, K, “Structure, Composition, and Chemical Reactivity of Carbon Nanotubes by Selective Nitrogen Doping”, Carbon, 2006, 44, 1429-1437
33. Tuinstra, F., Koenig, J., “Raman Spectrum of Graphite”, The Journal of Chemical Physics, 1970, 53, 1126-1130
34. Pimenta, M., Dresselhaus, G., Dresselhaus, M., Cancado, L., Jorio, A., Saito, R., Studying Disorder in Graphite-based Systems by Raman Spectroscopy”, Physical Chemistry Chemical Physics, 2007, 9, 1276-1290
35. Schniepp, H., Li, J., McAllister, M., Sai, H., Herrera-Alonso, M., Adamson, D., Pruı¨homme, R., Car, R., Saville, D., Aksay, I., “Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide”, J. Phys.Chem. B, 2006, 110, 8535-8539
36. Kovalevski, V., Safronov, A., “Pyrolysis of Hollow Carbon on metal Catalyst”, Carbon, 1998, 36, 7-8, 963-968
37. Arrigo, R., Havecker, M., Schlogl, R., Su, D., “Dynamic Surface Rearrangement and Thermal Stability of Nitrogen Functional Groups on Carbon Nanotubes”, Chemical Communications, 2008, 4891-4893
38. Shao, Y., Zhang, S., Engelhard, M., Li, G., Shao, G., Wang, Y., Liu, J., Aksay, I., Lin, Y., “Nitrogen-doped Graphene and its Electrochemical Applications”, Journal of Materials Chemistry, 2010, 20, 7491-7496
39. Yeh, T., Teng, C., Chen, S., Teng, H., “Nitrogen-Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water-Splitting under Visible Light Illumination”, Adv. Mater., 2014, 26, 3297–3303
40. Sun, Y., Huang, W., Liou, J., Lu, Y., Shih, K., Lin, C., Cheng, S., “Conversion from Self-assembled Block Copolymer Nanodomains to Carbon Nanostructures with Welldefined Morphology”, RSC Adv., 2015, 5, 105774–105784
41. Lu, Y., Liou, J., Lin, C., Sun, Y., “Electrocatalytic Activity of a Nitrogen-enriched Mesoporous Carbon Framework and its Hybrids with Metal Nanoparticles Fabricated Through the Pyrolysis of Block Copolymers”, RSC Adv., 2015, 5, 105760–105773
42. Aizawa, M., Buriak, J., “Block Copolymer-Templated Chemistry on Si, Ge, InP, and GaAs Surfaces”, J. Am. Chem. Soc., 2005, 127, 8932-9833
43. Aizawa, M., Buriak, J., “Block Copolymer Templated Chemistry for the Formation of Metallic Nanoparticle Arrays on Semiconductor Surfaces”, Chem. Mater., 2007, 19, 5090-5101
44. Kline, S., “Reduction and Analysis of SANS and USANS Data Using IGOR Pro”, J. Appl. Crystallogr., 2006, 39, 895-900
45. Roe, R., “Methods of X-ray and neutron scattering in polymer science”, Oxford
University Press: New York, 2000
46. Beaucage, G., “Approximations Leading to a Unified Exponential/Power-Law
Approach to Small-Angle Scattering”, J. Appl. Crystallogr., 1995, 28, 717-728.
47. Wang, S., Sun, Y., Chiang, A., Hung, H., Chen, M., Wood, K., “Carboxylic Acid-Directed Clustering and Dispersion of ZrO2 Nanoparticles in Organic Solvents: A Study by Small-Angle X-ray/Neutron Scattering and NMR”, J.Phys. Chem. C., 2011, 115, 11941-11950
48. Abdo, H., Khalil, K., Al-Deyab, S., Altaleb, H., Sherif, E.-S., “Antibacterial Effect of Carbon Nanofibers Containing Ag Nanoparticles”, Fibers and Polymers, 2013, 14, 1985-1992
49. Santana, A., Noda, L., Pires, A., Bertolino, J., “Poly (4-vinylpyridine)/cupric Salt Complexes: Spectroscopic and Thermal Properties”, Polymer Testing, 2004, 23, 839-845
50. Zeng, Z., Ko, T., “Structure–Conductivity Relationships of Iodine-Doped
Polyaniline”, Journal of Polymer Science: Part B: Polymer Physics, 1997, 35, 1993–2001
51. Choi, C., Chung, M., Kwon, H., Parka, S., Woo, S., “B, N- and P, N-doped Graphene as Highly Active Catalysts for Oxygen Reduction Reactions in Acidic Media”, J. Mater. Chem. A, 2013, 1, 3694–3699 |