博碩士論文 103324015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.142.250.99
姓名 李映賜(Ying-Sih Li)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 高可靠度車用印刷電路板之表面處理層開發
★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究
★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析★ 電遷移對純錫導線晶粒旋轉之研究
★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究★ 鋁鍺薄膜封裝研究
★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長
★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究
★ 無鉛銲料與碲化鉍基材之界面反應研究★ 高摻雜之二氧化錫薄膜能隙窄化現象及氧化銦薄膜之應力量測與探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要以無電鍍方式鍍製擴散阻障層於n型鉍碲材(Bi2Te2.55Se0.45)料上,探討無電鍍鎳磷層與n型鉍碲材料、無鉛銲料的界面反應,分析生成的介金屬化合物,討論錫、鎳、碲原子於界面處的擴散情形。以SEM觀察多次迴銲於270 oC持溫30秒的界面形貌,與長時間熱處理下介金屬化合物的生長狀況。利用EPMA定量分析鑑定生成相的組成,線掃描觀察無電鍍鎳磷層阻擋各原子擴散的情形。以慢速推力機檢測多孔性碲化錫對於機械性質的關係,量化銲接點的機械強度,並評估無電鍍鎳磷層對於熱電裝置是否有影響,最後比較與p型熱電(Bi0.25Sb0.75)2Te3於推力強度上的差異。
  實驗結果顯示,沒有鍍製擴障層的試片在長時間退火下生成的碲化錫會隨退火時間增長而加厚,而在鍍製鎳磷層的試片中並無發現碲化錫的生長,除此之外迴銲後的反應界面有相當大的差異。線掃描的結果顯示錫與碲原子皆被無電鍍鎳磷層擋住,因而無碲化錫相的生成,且經15天退火的試片依然有相同結果。而推力測試的部分,有鍍製鎳磷層的機械強度表現皆較佳,且破壞界面由碲化錫界面轉移至銲料中,表示無電鍍鎳磷層可藉由抑止碲化錫的生長,進而增強熱電裝置的機械性質。與p型熱電推力結果比較,發現與n型有相同的結果,無電鍍鎳磷層對於p型熱電也有助益。因此,以無電鍍鎳磷層對於鉍碲材料來說除了能做為有效的擴散阻障層的同時,亦提升了系統的機械性質。
摘要(英) In electronic packaging, plating a diffusion barrier is commonly way to prevent the formation of undesirable intermetallic compounds (IMCs), and Nickel have known as an effective diffusion barrier to block the diffusion of Sn atoms. In this study, electroless Ni-P act as a diffusion barrier in lead-free solders/Bi2Te2.55Se0.45 system to obstruct the formation of SnTe. After multiple-reflowing and aging, the different IMCs form at the interface would be observed by scanning electron microscope (SEM). The composition of IMCs and the diffusion profile of Sn atoms would be revealed in quantitative analysis and line scanning conducted by electron probe x-ray microanalyzer (EPMA), respectively. Shear test is applied to investigate the mechanical property attributed to porous SnTe IMCs and the effect of electroless Ni-P plating.
  The results elucidate no SnTe layer is observed after electroless Ni-P depositing. Based on line scanning analysis, Sn atoms is obstructed by Ni-P layer and result in the prohibition of forming SnTe IMCs. In shear test, shear strength is significant improving for Ni-P depositing samples. Moreover, the ball grid array (BGA) fractured from the interface between solder and Bi2Te2.55Se0.45 into solder. It is implied that electroless Ni-P enhance the mechanical properties of Bi2Te2.55Se0.45 due to the lack of SnTe IMCs. Thus, electroless Ni-P plating is an effective diffusion barrier for lead-free solders/Bi2Te2.55Se0.45 systems and improve the mechanical properties of systems.
關鍵字(中) ★ 無電鍍鎳鄰層
★ 熱電材料
★ 界面研究
關鍵字(英)
論文目次 目錄
中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 序論 1
1-1 前言 1
1-2 熱電材料之發展 1
1-3 熱電模組與熱電優質 3
1-3-1 熱電模組 3
1-3-2 熱電優質 4
1-4 熱電材料與無鉛銲料界面反應之文獻回顧 5
1-4-1 Sn/Te 反應偶 5
1-4-2 Sn-Cu/Te 反應偶 6
1-4-3 Sn-Ag/Te 反應偶 7
1-4-4 Sn-Bi/Te 反應偶 7
1-4-5 Sn/Bi2Te3 反應偶 8
1-4-6 Sn/(Bi0.25Sb0.75)2Te3 反應偶 9
1-4-7 Sn/Bi2(Te0.9Se0.1) 反應偶 10
1-5 擴散阻障層 11
1-6 無電鍍鎳磷層 12
1-6-1 無電鍍鎳的原理 12
1-6-2 無電鍍鎳的性質與結構 14
1-6-3 無電鍍鎳磷層與碲化鉍界面反應之文獻探討 14
1-7 推力測試及其文獻回顧 17
1-8 研究動機 20
第二章 實驗方法 21
2-1材料製備 21
2-1-1熱電材料 21
2-1-2無鉛銲料 21
2-2無電鍍鎳磷 22
2-3 界面反應 23
2-4 推力測試 24
2-5 試片分析 24
2-5-1 掃描式電子顯微鏡(SEM) 24
2-5-2 電子微探儀(EPMA) 25
2-5-3 能量散佈光譜儀(EDS) 26
第三章 結果與討論 27
3-1 界面反應 27
3-1-1 無鉛銲料與n-BST之界面反應 27
3-1-2 無鉛銲料與Ni-P/n-BST之界面反應 31
3-2 推力測試 41
第四章 結論 50
參考文獻 52
參考文獻 1.L. L. Liao, M. J. Dai, C. K. Liu, and K. N. Chiang, “Thermo-electric finite element analysis and characteristic of thermoelectric generator with intermetallic compound”, Microelectron. Eng., 120, 194-199 (2014).
2.G. Jeffrey Snyder and Eric S. Toberer, “Complex thermoelectric materials”, Nat. Mater., 7, 105-114 (2008).
3.S. W. Chen and C. N. Chiu, “Unusual cruciform pattern interfacial reactions in Sn/Te couple”, Scripta Mater., 56, 97-99 (2007).
4.M. L. Huang, T. Loeher, and A. Ostmann, and H. Reichi, “Role of Cu in dissolution of Cu metallization in molten Sn-based solders”, Appl. Phys. Lett., 86, 181908 (2005).
5.S. C. Hsu, S. J. Wang, and C. Y. Liu, “Effect of Cu content on interfacial reaction between Sn(Cu) alloys and Ni/Ti thin-film metallization”, J. Electron. Mater., 32, 1214-1221 (2003).
6.C. N. Liao and C. H. Lee, “Suppression of vigorous liquid Sn/Te reactions by Sn-Cu solder alloys”, J. Mater. Res., 23, 3303-3308 (2008).
7.C. N. Liao and Y. C. Huang, “Effect of Ag addition in Sn on growth of SnTe compound during reaction between molten solder and tellurium”, J. Mater. Res., 25, 391-395 (2010).
8.C. N. Chiu, C. H. Wang, and S. W. Chen, “Interfacial reactions in the Sn-Bi/Te couples”, J. Electron. Mater., 37, 40-44 (2007).
9.S. W. Chen, C. Y. Wu, H. J. Wu, and W. T. Chiu, “Interfacial reactions in Sn/Bi2Te3, Sn/Bi2Se3 and Sn/Bi2(Te1-xSex)3 couples”, J. Alloys Compd., 611, 313-318 (2014).
10.S. W. Chen, H. J. Wu, C. Y. Wu, C. F. Chang, and C. Y. Chen, “Reaction evolution and alternating layer formation in Sn/(Bi0.25Sb0.75)2Te3 and Sn/Sb2Te3 couples”, J. Alloys Compd., 553, 106-112 (2013).
11.W. H. Chao, Y. R. Chen, S. C. Tseng, P. H. Yang, R. J. Wu, and J. U. Hwang, “Enhanced thermoelectric properties of metal film on bismuth telluride-based materials”, Thin Solid Films, 570, 172-177 (2014).
12.Y. C. Lan, D. Z. Wang, G. Chen, and Z. F. Ren, “Diffusion of nickel and tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials”, Appl. Phys. Lett., 92 101910 (2008).
13.K. Xiong, W. Wang, H. N Alshareef, R. P Gupta, J. B White, B. E Gnade, and K. Cho, “Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces”, J. Phys. D: Appl. Phys., 43, 115303 (2010).
14.Brenner, A., and Riddell, G. E, “Deposition of Nickel and Cobalt by chemical reduction”, J. Res., 39, 385-395 (1947).
15.R C Agarwala and V. Agarwala, “Electroless alloy/composite coatings: A review”, Sadhana, 28, 475-493 (2003).
16.P. Sahoo and S. K. Das, “Tribology of electroless nickel coatings – A review”, Mater. Des., 32, 1760-1775 (2011).
17.R. Parkinson, “Properties and applications of electroless nickel”, Nickel Development Institute Technical Series no.10081, 1, (1995).
18.S. L. Chow, N. E. Hedgecock, and M. Schlesinger, “Electron microscope study of the nucleation and growth of electroless cobalt and nickel”, Electrochem. Soc., 119, 1614-1619 (1972).
19.H. Ashassi-Sorkhabi and S. H. Rafizadeh, “Effect of coating time and heat treatment on structures and corrosion characteristics of electroless Ni-P alloy deposits”, Surf. Coat. Technol., 176, 318-326 (2004).
20.T. Y. Lin, C. N. Liao, and Albert T. Wu, “Evaluation of diffusion barrier between lead-free solder systems and thermoeletic materials”, J. Electron. Mater., 41, 153-158 (2012).
21.L. C. Lo and Albert T. Wu, “Interfacial reactions between diffusion barriers and thermoelectric materials under current stressing”, J. Electron. Mater., 41, 3325-3320 (2012).
22.P. Y. Chien, C. H. Yen, H. H. Hsu, and Albert T. Wu, “Polarity effect in a Sn3Ag0.5Cu/bismuth telluride thermoelectric system”, J. Electron. Mater., 43, 284-289 (2014).
23.C. F. Tseng, and J. G. Duh, “Correlation between microstructure evolution and mechanical strength in the Sn-3.0Ag-0.5Cu/ENEOIG solder joint”, Mater. Sci. Eng., A, 580, 169-174 (2013).
24.JEDEC JESD22-B117B-2014.
25.J. Y. Hon Chia, B. Cotterell, and T. C. Chai, “The mechanics of the solder ball shear test and the effect of shear rate”, Mater. Sci. Eng., 417, 259-294 (2006).
26.J. W. Kim, Y. C. Lee, S. S. Ha, and S. B. Jung, “Failure behaviors of BGA solder joints under various loading conditions of high-speed shear test”, J. Mater. Sci. – Mater. Electron., 20, 17-24 (2009).
27.J. W. Kim, D. G. Kim, and S. B. Jung, “Investigations of the test parameters and bump structures in the shear test of flip chip solder bump”, Thin Solid Films, 204, 405-409 (2006).
28.H. Okamoto, “Ni-P(nickel-phosphorus)”, J. Phase Equilib., 21, 210 (2000).
29.J. M. Koo and S. B. Jung,“Effect of substrate metallization on mechanical properties of Sn-3.5Ag BGA solder joints with multiple reflows”, Microelectron. Eng., 82, 569-574 (2005).
30.J. W. Yoon and S. B. Jung, “Interfacial reaction between Sn-0.4Cu solder and Cu substrate with or without ENIG plating layer during reflow reaction“, J. Alloys Compd., 396, 122-127 (2005).
31.Y. C. Lin, K. J. Wang, and J G. Duh, “Detailed phase evolution of phosphorous-rich layer and formation of the Ni-Sn-P compound in Sn-Ag-Cu/Electroplated Ni-P solder joints”, J. Electron. Mater., 39, 283-294 (2009).
32.P. Nash, "Phase diagrams of binary nickel alloys." ASM International(USA), 394, (1991).
33.E.A. Brandes and G B Brook., Smithells Metals Reference Book, Seventh ed., 1992.
34.林能億碩士論文,國立中央大學化學工程與材料工程研究所(2014).
指導教授 吳子嘉 審核日期 2016-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明