參考文獻 |
1. Zempleni, J., Wijeratne, S. S., and Hassan, Y. I. (2009) Biotin. Biofactors 35, 36-46
2. Tong, L. (2013) Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci 70, 863-891
3. Chapman-Smith, A., and Cronan, J. E., Jr. (1999) In vivo enzymatic protein biotinylation. Biomol Eng 16, 119-125
4. Cronan, J. E., Jr. (1990) Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J Biol Chem 265, 10327-10333
5. Hoja, U., Wellein, C., Greiner, E., and Schweizer, E. (1998) Pleiotropic phenotype of acetyl-CoA-carboxylase-defective yeast cells--viability of a BPL1-amber mutation depending on its readthrough by normal tRNAGlnCAG. Eur J Biochem 254, 520-526
6. Sumper, M., and Riepertinger, C. (1972) Structural relationship of biotin-containing enzymes. Acetyl-CoA carboxylase and pyruvate carboxylase from yeast. Eur J Biochem 29, 237-248
7. Kim, H. S., Hoja, U., Stolz, J., Sauer, G., and Schweizer, E. (2004) Identification of the tRNA-binding protein Arc1p as a novel target of in vivo biotinylation in Saccharomyces cerevisiae. J Biol Chem 279, 42445-42452
8. Mirande, M. (2010) Processivity of translation in the eukaryote cell: role of aminoacyl-tRNA synthetases. FEBS Lett 584, 443-447
9. Wang, C. C., and Schimmel, P. (1999) Species barrier to RNA recognition overcome with nonspecific RNA binding domains. J Biol Chem 274, 16508-16512
10. Chang, C. P., Lin, G., Chen, S. J., Chiu, W. C., Chen, W. H., and Wang, C. C. (2008) Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain. J Biol Chem 283, 30699-30706
11. Grant, T. D., Snell, E. H., Luft, J. R., Quartley, E., Corretore, S., Wolfley, J. R., Snell, M. E., Hadd, A., Perona, J. J., Phizicky, E. M., and Grayhack, E. J. (2012) Structural conservation of an ancient tRNA sensor in eukaryotic glutaminyl-tRNA synthetase. Nucleic Acids Res 40, 3723-3731
12. Simos, G., Segref, A., Fasiolo, F., Hellmuth, K., Shevchenko, A., Mann, M., and Hurt, E. C. (1996) The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J 15, 5437-5448
13. Frechin, M., Enkler, L., Tetaud, E., Laporte, D., Senger, B., Blancard, C., Hammann, P., Bader, G., Clauder-Munster, S., Steinmetz, L. M., Martin, R. P., di Rago, J. P., and Becker, H. D. (2014) Expression of nuclear and mitochondrial genes encoding ATP synthase is synchronized by disassembly of a multisynthetase complex. Mol Cell 56, 763-776
14. Carter, C. W., Jr. (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem 62, 715-748
15. Burbaum, J. J., and Schimmel, P. (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. J Biol Chem 266, 16965-16968
16. Giege, R. (2006) The early history of tRNA recognition by aminoacyl-tRNA synthetases. J Biosci 31, 477-488
17. Giege, R., Sissler, M., and Florentz, C. (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 26, 5017-5035
18. Chang, K. J., and Wang, C. C. (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem 279, 13778-13785
19. Mazauric, M. H., Reinbolt, J., Lorber, B., Ebel, C., Keith, G., Giege, R., and Kern, D. (1996) An example of non-conservation of oligomeric structure in prokaryotic aminoacyl-tRNA synthetases. Biochemical and structural properties of glycyl-tRNA synthetase from Thermus thermophilus. Eur J Biochem 241, 814-826
20. Ostrem, D. L., and Berg, P. (1970) Glycyl-tRNA synthetase: an oligomeric protein containing dissimilar subunits. Proc Natl Acad Sci U S A 67, 1967-1974
21. Mazauric, M. H., Keith, G., Logan, D., Kreutzer, R., Giege, R., and Kern, D. (1998) Glycyl-tRNA synthetase from Thermus thermophilus--wide structural divergence with other prokaryotic glycyl-tRNA synthetases and functional inter-relation with prokaryotic and eukaryotic glycylation systems. Eur J Biochem 251, 744-757
22. Sakurai, M., Ohtsuki, T., and Watanabe, K. (2005) Modification at position 9 with 1-methyladenosine is crucial for structure and function of nematode mitochondrial tRNAs lacking the entire T-arm. Nucleic Acids Res 33, 1653-1661
23. Krajewski, K. M., Lewis, R. A., Fuerst, D. R., Turansky, C., Hinderer, S. R., Garbern, J., Kamholz, J., and Shy, M. E. (2000) Neurological dysfunction and axonal degeneration in Charcot-Marie-Tooth disease type 1A. Brain 123 ( Pt 7), 1516-1527
24. Antonellis, A., Ellsworth, R. E., Sambuughin, N., Puls, I., Abel, A., Lee-Lin, S. Q., Jordanova, A., Kremensky, I., Christodoulou, K., Middleton, L. T., Sivakumar, K., Ionasescu, V., Funalot, B., Vance, J. M., Goldfarb, L. G., Fischbeck, K. H., and Green, E. D. (2003) Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am J Hum Genet 72, 1293-1299
25. Motley, W. W., Talbot, K., and Fischbeck, K. H. (2010) GARS axonopathy: not every neuron′s cup of tRNA. Trends Neurosci 33, 59-66
26. Nangle, L. A., Zhang, W., Xie, W., Yang, X. L., and Schimmel, P. (2007) Charcot-Marie-Tooth disease-associated mutant tRNA synthetases linked to altered dimer interface and neurite distribution defect. Proc Natl Acad Sci U S A 104, 11239-11244
27. Achilli, F., Bros-Facer, V., Williams, H. P., Banks, G. T., AlQatari, M., Chia, R., Tucci, V., Groves, M., Nickols, C. D., Seburn, K. L., Kendall, R., Cader, M. Z., Talbot, K., van Minnen, J., Burgess, R. W., Brandner, S., Martin, J. E., Koltzenburg, M., Greensmith, L., Nolan, P. M., and Fisher, E. M. (2009) An ENU-induced mutation in mouse glycyl-tRNA synthetase (GARS) causes peripheral sensory and motor phenotypes creating a model of Charcot-Marie-Tooth type 2D peripheral neuropathy. Dis Model Mech 2, 359-373
28. Grice, S. J., Sleigh, J. N., Motley, W. W., Liu, J. L., Burgess, R. W., Talbot, K., and Cader, M. Z. (2015) Dominant, toxic gain-of-function mutations in gars lead to non-cell autonomous neuropathology. Hum Mol Genet
29. Ray, P. S., and Fox, P. L. (2014) Origin and evolution of glutamyl-prolyl tRNA synthetase WHEP domains reveal evolutionary relationships within Holozoa. PLoS One 9, e98493
30. Francklyn, C., Perona, J. J., Puetz, J., and Hou, Y. M. (2002) Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation. RNA 8, 1363-1372
31. Jia, J., Arif, A., Ray, P. S., and Fox, P. L. (2008) WHEP domains direct noncanonical function of glutamyl-Prolyl tRNA synthetase in translational control of gene expression. Mol Cell 29, 679-690
32. Huang, H. Y., Tang, H. L., Chao, H. Y., Yeh, L. S., and Wang, C. C. (2006) An unusual pattern of protein expression and localization of yeast alanyl-tRNA synthetase isoforms. Mol Microbiol 60, 189-198
33. Tang, H. L., Yeh, L. S., Chen, N. K., Ripmaster, T., Schimmel, P., and Wang, C. C. (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J Biol Chem 279, 49656-49663
34. Natsoulis, G., Hilger, F., and Fink, G. R. (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46, 235-243
35. Chatton, B., Walter, P., Ebel, J. P., Lacroute, F., and Fasiolo, F. (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J Biol Chem 263, 52-57
36. Frechin, M., Senger, B., Braye, M., Kern, D., Martin, R. P., and Becker, H. D. (2009) Yeast mitochondrial Gln-tRNAGln is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS. Genes Dev 23, 1119-1130
37. Frugier, M., Moulinier, L., and Giege, R. (2000) A domain in the N-terminal extension of class IIb eukaryotic aminoacyl-tRNA synthetases is important for tRNA binding. EMBO J 19, 2371-2380
38. Godinic, V., Mocibob, M., Rocak, S., Ibba, M., and Weygand-Durasevic, I. (2007) Peroxin Pex21p interacts with the C-terminal noncatalytic domain of yeast seryl-tRNA synthetase and forms a specific ternary complex with tRNASer. FEBS J 274, 2788-2799
39. Chang, C. P., Tseng, Y. K., Ko, C. Y., and Wang, C. C. (2012) Alanyl-tRNA synthetase genes of Vanderwaltozyma polyspora arose from duplication of a dual-functional predecessor of mitochondrial origin. Nucleic Acids Res 40, 314-322
40. Lin, C. H., Lin, G., Chang, C. P., and Wang, C. C. (2010) A tryptophan-rich peptide acts as a transcription activation domain. BMC Mol Biol 11, 85
41. Liao, C. C., Lin, C. H., Chen, S. J., and Wang, C. C. (2012) Trans-kingdom rescue of Gln-tRNAGln synthesis in yeast cytoplasm and mitochondria. Nucleic Acids Res 40, 9171-9181
42. Ladror, U. S., Egan, D. A., Snyder, S. W., Capobianco, J. O., Goldman, R. C., Dorwin, S. A., Johnson, R. W., Edalji, R., Sarthy, A. V., McGonigal, T., Walter, K. A., and Holzman, T. F. (1998) Domain structure analysis of elongation factor-3 from Saccharomyces cerevisiae by limited proteolysis and differential scanning calorimetry. Protein Sci 7, 2595-2601
43. Karanasios, E., and Simos, G. (2010) Building arks for tRNA: structure and function of the Arc1p family of non-catalytic tRNA-binding proteins. FEBS Lett 584, 3842-3849
44. Graindorge, J. S., Senger, B., Tritch, D., Simos, G., and Fasiolo, F. (2005) Role of Arc1p in the modulation of yeast glutamyl-tRNA synthetase activity. Biochemistry 44, 1344-1352
45. Leon-Del-Rio, A., Leclerc, D., Akerman, B., Wakamatsu, N., and Gravel, R. A. (1995) Isolation of a cDNA encoding human holocarboxylase synthetase by functional complementation of a biotin auxotroph of Escherichia coli. Proc Natl Acad Sci U S A 92, 4626-4630
46. Polyak, S. W., Chapman-Smith, A., Brautigan, P. J., and Wallace, J. C. (1999) Biotin protein ligase from Saccharomyces cerevisiae. The N-terminal domain is required for complete activity. J Biol Chem 274, 32847-32854
47. Tissot, G., Pepin, R., Job, D., Douce, R., and Alban, C. (1998) Purification and properties of the chloroplastic form of biotin holocarboxylase synthetase from Arabidopsis thaliana overexpressed in Escherichia coli. Eur J Biochem 258, 586-596
48. Pick, H., Kilic, S., and Fierz, B. (2014) Engineering chromatin states: chemical and synthetic biology approaches to investigate histone modification function. Biochim Biophys Acta 1839, 644-656
49. Kuroishi, T., Rios-Avila, L., Pestinger, V., Wijeratne, S. S., and Zempleni, J. (2011) Biotinylation is a natural, albeit rare, modification of human histones. Mol Genet Metab 104, 537-545
50. Hasim, S., Tati, S., Madayiputhiya, N., Nandakumar, R., and Nickerson, K. W. (2013) Histone biotinylation in Candida albicans. FEMS Yeast Res 13, 529-539
51. Yao, X., Wei, D., Soden, C., Jr., Summers, M. F., and Beckett, D. (1997) Structure of the carboxy-terminal fragment of the apo-biotin carboxyl carrier subunit of Escherichia coli acetyl-CoA carboxylase. Biochemistry 36, 15089-15100
52. Dassanayake, R. P., Madsen-Bouterse, S. A., Truscott, T. C., Zhuang, D., Mousel, M. R., Davis, W. C., and Schneider, D. A. (2016) Classical scrapie prions are associated with peripheral blood monocytes and T-lymphocytes from naturally infected sheep. BMC Vet Res 12, 27
53. Nada, S., Chang, P. K., and Dignam, J. D. (1993) Primary structure of the gene for glycyl-tRNA synthetase from Bombyx mori. J Biol Chem 268, 7660-7667
54. Shiba, K., Schimmel, P., Motegi, H., and Noda, T. (1994) Human glycyl-tRNA synthetase. Wide divergence of primary structure from bacterial counterpart and species-specific aminoacylation. J Biol Chem 269, 30049-30055
55. Chien, C. I., Chen, Y. L., Chen, S. J., Chou, C. M., Chen, C. Y., and Wang, C. C. (2015) Vanderwaltozyma polyspora possesses two glycyl-tRNA synthetase genes: One constitutive and one inducible. Fungal Genet Biol 76, 47-56
56. Turner, R. J., Lovato, M., and Schimmel, P. (2000) One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions. J Biol Chem 275, 27681-27688
57. Chang, C. P., Chang, C. Y., Lee, Y. H., Lin, Y. S., and Wang, C. C. (2015) Divergent Alanyl-tRNA Synthetase Genes of Vanderwaltozyma polyspora Descended from a Common Ancestor through Whole-Genome Duplication Followed by Asymmetric Evolution. Mol Cell Biol 35, 2242-2253
58. Jakubowski, H. (2012) Quality control in tRNA charging. Wiley Interdiscip Rev RNA 3, 295-310
59. Martinis, S. A., Plateau, P., Cavarelli, J., and Florentz, C. (1999) Aminoacyl-tRNA synthetases: a family of expanding functions. EMBO J 18, 4591-4596
60. Park, M. C., Kang, T., Jin, D., Han, J. M., Kim, S. B., Park, Y. J., Cho, K., Park, Y. W., Guo, M., He, W., Yang, X. L., Schimmel, P., and Kim, S. (2012) Secreted human glycyl-tRNA synthetase implicated in defense against ERK-activated tumorigenesis. Proc Natl Acad Sci U S A 109, E640-647
61. He, W., Bai, G., Zhou, H., Wei, N., White, N. M., Lauer, J., Liu, H., Shi, Y., Dumitru, C. D., Lettieri, K., Shubayev, V., Jordanova, A., Guergueltcheva, V., Griffin, P. R., Burgess, R. W., Pfaff, S. L., and Yang, X. L. (2015) CMT2D neuropathy is linked to the neomorphic binding activity of glycyl-tRNA synthetase. Nature 526, 710-714
62. He, W., Zhang, H. M., Chong, Y. E., Guo, M., Marshall, A. G., and Yang, X. L. (2011) Dispersed disease-causing neomorphic mutations on a single protein promote the same localized conformational opening. Proc Natl Acad Sci U S A 108, 12307-12312 |