博碩士論文 103827011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.191.89.16
姓名 游婉甯(Wan-Ning Yu)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 兩性雙離子羧基甜菜鹼高分子: 兩性離子間之側鏈甲基的影響與探討
(Zwitterionic Carboxybetaine Polymers: The Role of Substituted Methyl Group in the Intercharge Arm)
相關論文
★ 可功能化抗沾黏性雙離子自組裝單層膜於生物感測器之應用★ 雙離子胺基酸吸附劑在血液中重金屬 吸附之應用
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 新型兩性磷脂類高分子聚合物與其自組裝奈米結構
★ 聚電解質和多價植酸之間向抗菌強韌水凝膠的離子絡合作用★ 磺基甜菜鹼基自組裝單分子層的形成、穩定性和抗污染性的比較研究
★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane
★ 開發可生物降解的完全磷酸膽鹼水凝膠★ Development of Functional Biointerface by Mixed Oligomeric Silatranes
★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry
★ Disulfide-based cross-linkers for functional polymeric networks★ 建立雙離子高分子修飾蛋白質技術與分析
★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 兩性雙離子材料指的是同一個分子鏈上同時帶有正電荷及負電荷的官能基,此材料受重視,因為其材料具有超親水與良好抗生物吸附的特性。在雙離子材料內,最特別的是羧基甜菜鹼(carboxybetaine)材料,其本身具有良好抗生物吸附的特性外,其分子上的羧酸官能基(carboxylic acid)可用於化學接枝(chemical conjugation),未來可做為功能性生物界面之應用。但是作為廣泛運用為目標的兩性雙離子材料,在分子結構上的設計是相當重要的。曾有學者發現,若羧基甜菜鹼單體內四級胺及羧酸官能基間含有兩個碳間距,在鹼性的情況下,其分子會有霍夫曼消去反應(Hofmann elimination)的現象產生,一旦此現象發生,羧基甜菜鹼就會失去其兩性雙離子材料該有的特性,其抗生物吸附的特性就會消逝,若羧基甜菜鹼作為長期應用,材料本身特性的維持是相當重要的。在本研究裡,我們設計了新型結構的羧基甜菜鹼,期望它在鹼的環境內不會有消去反應的發生,而消去反應通常發生在鏈上β的位置。而本實驗結果,我們在四級胺及羧酸官能基間碳鏈β上的位置增加一個側鏈的甲基,新型高分子單體我們稱之為β-substituted methyl carboxybetaine acrylamide (β-CB-2),在以surface-initiated atom transfer radical polymerization (SI-ATRP)方法,合成高分子刷(polyβ-CB-2)於substrates表面,以水接觸角、X射線光電子能譜(X-ray photoelectron spectroscopy, XPS)、原子力顯微鏡(atomic force microscopy)觀察其修飾後的表面之親水性質、表面元素分析以及表面粗糙度變化。並藉由革蘭氏陽性菌表皮葡萄球菌(Staphylococcus epidermidis)、陰性菌綠膿桿菌(Pseudomonas aeruginosa)和大腸桿菌(Escherichia coli)做細菌貼附測試,牛血清白蛋白(bovine serum albumin, BSA)、黏蛋白(mucin)、溶菌酶(lysozyme)和牛血纖維蛋白原(fibrinogen)做蛋白質貼附測試,3T3纖維母細胞做細胞貼附測試。結果發現剛合成的 polyβ-CB-2皆有良好抗生物吸附的能力。接著再對polyβ-CB-2做穩定性的測試,發現其在鹼的環境下會有柴瑟夫消去反應(Zaitsev elimination)的產生,形成但有三級胺之高分子結構,在這個消去反應發生後,對其做細菌、蛋白質和細胞貼附測試,發現會失去兩性離子特性,在水接觸角及X射線光電子能譜測試上,表面也有相對疏水及元素的變化。總結上述,本研究驗證分子結構設計對其化學結構的穩定性有很大的影響,可做為未來相關學者設計分子結構的參考依據。
摘要(英) Zwitterions contain both positively and negatively charged moieties in a molecule, which have received much attention because of their unique properties of superhydrophilicity, excellent anti-biofouling properties and diverse structural combinations. In particular, zwitterionic carboxybetaine materials (CBs) attract particular interests from worldwide due to their dual functionalities for antifouling and functionalizable properties with biomolecules to become a functional biointerface. However, a careful molecular design for the zwitterionic structure is needed to ensure the full exploitation in many applications under various distinct conditions. Previous findings showed that carboxybetaine monomers with two-carbon spacer between carboxylate and quaternary ammonium underwent elimination in a basic solution. Once eliminations occur, materials will lose their zwitterionic characteristics, leading to loss of desired antifouling properties. Therefore, the stability of CB materials is very important for long-term applications. In this work, we present a new molecular design to investigate stability of zwitterionic carboxybetaine-based polymers with attempt to avoid the elimination. The elimination reaction originates from the fact that protons adjacent to carbonyl groups are more acidic than other protons due to the hydrogen’s acidity of the β carbon. As a result, in this work, a hydrogen group is substituted by a methyl group in the intercharge arm, which is the carbon space between two charged groups, to afford β-substituted methyl carboxybetaine acrylamide (β-CB-2). In this study, we synthesized polyβ-substituted methyl carboxybetaine acrylamide (polyβ-CB-2) brushes on substrates via surface-initiated atom transfer radical polymerization (SI-ATRP). We applied contact angle goniometer, X-ray photoelectron spectroscopy (XPS), and atomic force microscope (AFM) to examine the hydrophilicity, the elemental compositions and roughness for the surfaces. The bacterial adhesion tests, protein adsorption tests and 3T3 fibroblast cell adsorption tests were conducted, showing the antifouling ability of the materials. Subsequently, we challenged the stability of the material under the basic surroundings. The results showed that Zaitsev elimination occurred to polyβ-CB-2 films, leading to loss of the fouling resistance against the adsorption of bacteria, proteins and fibroblast. In the contact angle and XPS measurements, changes in the elemental compositions on the surfaces and hydrophobic characteristic happened. Consequently, the goal of this study is to understand a structure-property relationships of CBs on the molecular level, which is valuable for the molecular design for demanded requirements.
關鍵字(中) ★ 抗生物吸附
★ 羧基甜菜鹼
★ 柴瑟夫消去反應
★ 兩性雙離子材料
★ 結構-性質關係
關鍵字(英)
論文目次 摘要 vi
Abstract viii
致謝 x
Table of contents xi
List of Figures xiv
List of Schemes xvii
List of Tables xviii
List of Abbreviations xix
CHAPTER 1: Introduction - 1 -
1.1 Biofouling - 1 -
1.1.1 Medical Environments - 1 -
1.1.2 Marine Environments - 2 -
1.1.3 Industrial Environments - 3 -
1.2 Biofilm Formation - 3 -
1.3 Controlling Protein Adsorption at Surface - 3 -
1.4 Antifouling Materials - 5 -
1.4.1 Polyhydrophilic Materials - 5 -
1.4.2 Polyzwitterion Materials - 6 -
1.5 Approaches to Developing Polymeric Zwitterionic Surfaces - 9 -
1.6 The problems on Carboxybetaine Materials - 10 -
1.7 Elimination Reaction: Hofmann and Zaitsev’s rule - 13 -
CHAPTER 2: Research Objective - 15 -
CHAPTER 3: Materials and Methods - 16 -
3.1 Materials - 16 -
3.2 β-substituted methyl carboxybetaine acrylamide (β-CB-2) Synthesis - 16 -
3.3 Preparation of Br-thiol and Silane -Modified Surfaces. - 17 -
3.3.1 Br-Thiol -Coated Surfaces - 17 -
3.3.2 Silane -Coated Surfaces - 17 -
3.4 Surface Polymerization. - 18 -
3.5 Acid-Base Titration - 19 -
3.6 Water Contact Angle - 19 -
3.7 X-ray Photoelectron Spectroscopy - 19 -
3.8 Atomic Force Microscope (AFM) - 20 -
3.9 Bacterial Adhesion - 22 -
3.10 Surface Plasmon Resonance (SPR) Technology and Analysis for Protein Adsorption - 22 -
3.11 Cell Adhesion - 23 -
CHAPTER 4: Results and Discussions - 24 -
4.1 β-CB-2 Molecules - 24 -
4.1.1 NMR Spectrum Analysis of β-CB-2 Molecules - 24 -
4.1.2 Mass spectrometry Analysis of β-CB-2 Molecules - 25 -
4.1.3 Acid-Base Titration - 25 -
4.1.4 Contact Angle Measurement of Grafted Polyβ-CB-2. - 26 -
4.1.5 Surface Elemental Composition Analysis of Polyβ-CB-2 - 27 -
4.1.6 AFM Analysis of Polyβ-CB-2 Films - 29 -
4.1.7 Bacteria adhesion test of Polyβ-CB-2 - 30 -
4.1.8 Protein Adsorption Tests on Polyβ-CB-2 - 35 -
4.1.9 Cell Adhesion test of Polyβ-CB-2 - 36 -
4.2 β-CB-2 Stability under Basic Condition - 37 -
4.2.1 NMR Spectra Analysis of Chemical Stability test with β-CB-2 - 37 -
4.2.2 XPS Analysis of Chemical Stability test - 40 -
4.2.3 Contact Angle Measurements for Chemical Stability Tests - 41 -
4.2.4 Bacterial Adhesion Tests after Base Treatment - 42 -
4.2.5 Protein adsorption test - 46 -
4.2.6 Cell Adhesion Tests - 47 -
CHAPTER 5: Conclusions - 48 -
CHAPTER 6: Future Works - 49 -
6.1 α-substituted methyl carboxybetaine acrylamide (α-CB-2) - 49 -
6.2 α-substituted methyl carboxybetaine acrylamide (α-CB-1) - 50 -
6.3 Remarks - 52 -
CHAPTER 7: Bibliographies - 53 -
參考文獻 1. Bixler, G.D. and B. Bhushan, Biofouling: lessons from nature. Philos Trans A Math Phys Eng Sci, 2012. 370(1967): p. 2381-417.
2. Donlan, R.M., Biofilms and Device-Associated Infections. Emerging Infectious Diseases, 2001. 7: p. 277–281.
3. Bryers, J.D., Medical biofilms. Biotechnol Bioeng, 2008. 100(1): p. 1-18.
4. Yeh, P.Y., et al., Electric field and vibration-assisted nanomolecule desorption and anti-biofouling for biosensor applications. Colloids Surf B Biointerfaces, 2007. 59(1): p. 67-73.
5. Copisarow, M., MARINE FOULING AND ITS PREVENTION. science, 1945. 101: p. 406-407.
6. Martensson, L., Marine biofouling a sticky problem. bioscience-explained, 2005. 2.
7. T.E. Cloete, L.J.V.S.B.o., The chemical control of biofouling in industrial water systems. Biodegradation, 1998. 9: p. 23-27.
8. Van Houdt, R. and C.W. Michiels, Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol, 2010. 109(4): p. 1117-31.
9. Donlan, R.M., Biofilm Formation: A Clinically Relevant Microbiological Process. HEALTHCARE EPIDEMIOLOGY, 2001. 33: p. 1387-1392.
10. C R Kokare, S.C., A N Khopade and K R Mahadik, Biofilm: Importance and applications. Indian Journal of Biotechnology, 2009. 8.
11. Brash, J.L. and T.A. Horbett, Proteins at Interfaces. 1995. 602: p. 1-23.
12. Estephan, Z.G., P.S. Schlenoff, and J.B. Schlenoff, Zwitteration as an alternative to PEGylation. Langmuir, 2011. 27(11): p. 6794-800.
13. KAZUHIRO NAKANISHI, T.S., AND KOREYOSHI IMAMURA, On the Adsorption of Proteins on Solid Surfaces, a Common but Very Complicated Phenomenon. JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2001. 91: p. 233-244.
14. UTRATA-WESO£EK, A., Antifouling surfaces in medical application. POLIMERY, 2013. 58.
15. Emanuele Ostuni, R.G.C., R. Erik Holmlin, Shuichi Takayama, and George M. Whitesides, A Survey of Structure-Property Relationships of Surfaces that Resist the Adsorption of Protein. Langmuir, 2001. 17: p. 5605-5620.
16. Yan-Yeung Luk, M.K., and Milan Mrksich, Self-Assembled Monolayers of Alkanethiolates Presenting Mannitol Groups Are Inert to Protein Adsorption and Cell Attachment. Langmuir, 2000. 16: p. 9604-9608.
17. Lokanathan, A.R., et al., Mixed poly (ethylene glycol) and oligo (ethylene glycol) layers on gold as nonfouling surfaces created by backfilling. Biointerphases, 2011. 6(4): p. 180-8.
18. Lingyan Li, S.C., Jie Zheng, Buddy D. Ratner,* and Shaoyi Jiang, Protein Adsorption on Oligo(ethylene glycol)-Terminated Alkanethiolate Self-Assembled Monolayers: The Molecular Basis for Nonfouling Behavior. J. Phys. Chem. B, 2005. 109: p. 2934-2941.
19. Zalipsky, S. and J.M. Harris, Introduction to Chemistry and Biological Applications of Poly(ethylene glycol). 1997. 680: p. 1-13.
20. Seongbong Jo, K.P., Surface modification using silanated poly(ethylene glycol)s. Biomaterials, 2000. 21: p. 605-616.
21. Chen, S., et al., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
22. Yeh, S.B., et al., Modification of silicone elastomer with zwitterionic silane for durable antifouling properties. Langmuir, 2014. 30(38): p. 11386-93.
23. Seongok Han, C.K., Dongsook Kwon, Thermal/oxidative degradation and stabilization of polyethylene glycol. POLYMER, 1997. 38: p. 317-323.
24. Zwaal, R.F.A., P. Comfurius, and L.L.M. Van Deenen, Membrane asymmetry and blood coagulation. Nature, 1977. 268(5618): p. 358-360.
25. Lewis, A.L., Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B: Biointerfaces, 2000. 18: p. 261–275.
26. PERKEPI.COM. CELL MEMBRANE – PHOSPHOLIPID BILAYER. Available from: http://www.perkepi.com/cell-membrane/.
27. Liu, R., et al., Drug carriers based on highly protein-resistant materials for prolonged in vivo circulation time. Regen Biomater, 2015. 2(2): p. 125-33.
28. Kazuhiko Ishihara, H.N., Takashi Mihara, Kimio Kurita, Yasuhiko Iwasaki, Nobuo Nakabayashi, Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res., 1998. 39: p. 323-330.
29. Kazuhiko Ishihara, T.U.a.N.N., Preparation of Phospholipid Polylners and Their Properties as Polymer Hydrogel Membranes. Polymer, 1990. 22: p. 355-360.
30. Feng, W., et al., Protein resistant surfaces: comparison of acrylate graft polymers bearing oligo-ethylene oxide and phosphorylcholine side chains. Biointerphases, 2006. 1(1): p. 50.
31. Zhang, Z., et al., Zwitterionic hydrogels: an in vivo implantation study. J Biomater Sci Polym Ed, 2009. 20(13): p. 1845-59.
32. Zheng Zhang, T.C., Shengfu Chen, and Shaoyi Jiang, Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Glass Slides. Langmuir, 2006. 22: p. 10072-10077.
33. J. YUAN, J.Z., J. ZHOU, Y. L. YUAN, J. SHEN and S. C. LIN, Platelet adhesion onto segmented polyurethane surfaces modified by carboxybetaine. J. Biomater. Sci. Polymer Edn, 2003. 14: p. 1339– 1349.
34. Yuan, J., et al., Improvement of blood compatibility on cellulose membrane surface by grafting betaines. Colloids and Surfaces B: Biointerfaces, 2003. 30(1-2): p. 147-155.
35. Zheng Zhang, S.C., and Shaoyi Jiang, Dual-Functional Biomimetic Materials: Nonfouling Poly(carboxybetaine) with Active Functional Groups for Protein Immobilization. Biomacromolecules, 2006. 7: p. 3311-3315.
36. Zhang, Z., et al., Blood compatibility of surfaces with superlow protein adsorption. Biomaterials, 2008. 29(32): p. 4285-91.
37. Kuang, J. and P.B. Messersmith, Universal surface-initiated polymerization of antifouling zwitterionic brushes using a mussel-mimetic peptide initiator. Langmuir, 2012. 28(18): p. 7258-66.
38. Raphae¨l Barbey, L.L., Dusko Paripovic, Nicolas Schu¨wer, Caroline Sugnaux, Stefano Tugulu, and Harm-Anton Klok, Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications. Chem. Rev., 2009. 109: p. 5437–5527.
39. Wikipedia. Atom-transfer radical-polymerization. Available from: https://en.wikipedia.org/wiki/Atom-transfer_radical-polymerization.
40. Xia, K.M.a.J., Atom Transfer Radical Polymerization. Chem. Rev., 2001. 101: p. 2921-2990.
41. Cao, B., et al., The impact of structure on elasticity, switchability, stability and functionality of an all-in-one carboxybetaine elastomer. Biomaterials, 2013. 34(31): p. 7592-600.
42. Angus R. Brown, D.C.R., Zoran Rankovic, and J. Richard Morphy, Synthesis of Tertiary Amines Using a Polystyrene (REM) Resin. J. Am. Chem. Soc., 1997. 119: p. 3288-3295.
43. Tarannum, N. and M. Singh, Synthesis and characterization of zwitterionic organogels based on Schiff base chemistry. Journal of Applied Polymer Science, 2010. 118(5): p. 2821-2832.
44. McMurry, J.E., Organic Chemistry. eighth ed. 2011: Cengage Learning.
45. William H. Brown, C.S.F., Brent L. Iverson, Eric Anslyn, Organic Chemistry. 2011: Cengage Learning.
46. Ginsburg, D., Concerning Amines: Their Properties, Preparation and Reactions. 2016: Elsevier.
47. Inc., T.F.S. What is XPS? ; Available from: http://xpssimplified.com/whatisxps.php.
48. Wikipedia. X-ray photoelectron spectroscopy. Available from: https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy.
49. Butt, H.-J., B. Cappella, and M. Kappl, Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 2005. 59(1-6): p. 1-152.
50. TAOLEI SUN, L.F., XUEFENG GAO, AND LEI JIANG, Bioinspired Surfaces with Special Wettability. ACCOUNTS OF CHEMICAL RESEARCH, 2005. 38: p. 644-652.
51. Patel, P., C.K. Choi, and D.D. Meng, Superhydrophilic Surfaces for Antifogging and Antifouling Microfluidic Devices. Journal of the Association for Laboratory Automation, 2010. 15(2): p. 114-119.
52. Nan Cheng, A.A.B., Omar Azzaroni, and Wilhelm T. S. Huck, Thickness-Dependent Properties of Polyzwitterionic Brushes. Macromolecules, 2008. 41: p. 6317-6321.
53. Huang, C.J., et al., Surface modification with zwitterionic cysteine betaine for nanoshell-assisted near-infrared plasmonic hyperthermia. Colloids Surf B Biointerfaces, 2016. 145: p. 291-300.
54. Desimoni, E. and B. Brunetti, X-Ray Photoelectron Spectroscopic Characterization of Chemically Modified Electrodes Used as Chemical Sensors and Biosensors: A Review. Chemosensors, 2015. 3(2): p. 70-117.
55. Liu, P., et al., Modification of Ti6Al4V substrates with well-defined zwitterionic polysulfobetaine brushes for improved surface mineralization. ACS Appl Mater Interfaces, 2014. 6(10): p. 7141-52.
56. R. L. C. Wang and H. J. Kreuzer, M.G., Molecular Conformation and Solvation of Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers and Their Resistance to Protein Adsorption J. Phys. Chem. B, 1997. 101: p. 9767-9773.
57. Zheng Zhang, S.C., Yung Chang, and Shaoyi Jiang, Surface Grafted Sulfobetaine Polymers via Atom Transfer Radical Polymerization as Superlow Fouling Coatings. J. Phys. Chem. B, 2006. 110: p. 10799-10804.
58. Mittal, K.L., Polymer Surface Modification: Relevance to Adhesion, ed. 2. 2000.
59. Huang, C.J., Y.S. Chen, and Y. Chang, Counterion-activated nanoactuator: reversibly switchable killing/releasing bacteria on polycation brushes. ACS Appl Mater Interfaces, 2015. 7(4): p. 2415-23.
60. R.N. Doetsch, T.M.C., Introduction to Bacteria and Their Ecobiology, ed. S.S.B. Media. 2012.
61. Bart Gottenbos, D.W.G., Henny C. van der Mei, Jan Feijen and Henk J. Busscher, Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. J. Antimicrob. Chemother., 2001. 48: p. 7-13.
62. Kellum, M.G., et al., Reversible Interpolyelectrolyte Shell Cross-Linked Micelles from pH/Salt-Responsive Diblock Copolymers Synthesized via RAFT in Aqueous Solution†. Macromolecules, 2010. 43(17): p. 7033-7040.
63. Walsh, C.L., J. Nguyen, and F.C. Szoka, Synthesis and characterization of novel zwitterionic lipids with pH-responsive biophysical properties. Chem Commun (Camb), 2012. 48(45): p. 5575-7.
64. Fang Sun, J.-R.E.-M., Daniel David Galvan, Tao Bai, Hsiang-Chieh Hung, Ying-Nien Chou, Peng Zhang, Shaoyi Jiang, and Qiuming Yu, Stealth Surface Modification of Surface-Enhanced Raman Scattering Substrates for Sensitive and Accurate Detection in Protein Solutions. ACS Nano, 2015. 9: p. 2668–2676.
指導教授 黃俊仁 審核日期 2016-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明