參考文獻 |
Ando, M. (1984). ScS polarization anisotropy around the Pacific Ocean. Journal of Physics of the Earth, 32(3), 179-195.
Bowman, J. R., & Ando, M. (1987). Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone. Geophys. J. Int., 88(1), 25-41.
Crampin, S. (1978). Seismic-wave propagation through a cracked solid: polarization as a possible dilatancy diagnostic. Geophys. J. Int., 53(3), 467-496.
Crampin, S. (1981). A review of wave motion in anisotropic and cracked elastic-media. Wave motion, 3(4), 343-391.
Crampin, S. (1984). Effective anisotropic elastic constants for wave propagation through cracked solids. Geophys. J. Int., 76(1), 135-145.
Crampin, S. (1999). Calculable fluid–rock interactions. J. Geol. Soc., 156(3), 501-514.
Fontaine, H., & Workman, D. R. (1978). Review of the geology and mineral resources of Kampuchea, Laos and Vietnam. In Third Regional Conference on Geology and Mineral Resources of Southeast Asia, Bangkok, Thailand (pp. 541-603).
Fromaget, J. (1934). Observations et réflexions sur la géologie stratigraphique et structurale de l′Indochine. Bull. Soc. Geol, 5(4), 101-164.
Fukao, Y. (1984). Evidence from core-reflected shear waves for anisotropy in the Earth′s mantle.
Gao, Y., Wu, J., Cai, J. A., Shi, Y. T., Lin, S., Bao, T., & Li, Z. N. (2009). Shear-wave splitting in the southeast of Cathaysia block, South China. J. Seismol., 13(2), 267-275.
Hess, H. H. (1964). Seismic anisotropy of the uppermost mantle under oceans. Nature, 203, 629-631.
Houseman, G.., and P. England, Finite strain calculations of continental deformation 1. Method and general results for convergent zones, J. Geophys. Res., 91, 3651-3663, 1986.
Hsü, K. J., Shu, S., Jiliang, L., Haihong, C., Haipo, P., & Sengor, A. M. C. (1988). Mesozoic overthrust tectonics in south China. Geology, 16(5), 418-421.
Hsü, K. J., Sun, S., & Li, J. L. (1987). Huanan Alps, not south China platform. Sci. Sin. B, 31(1), 109-119.
Huang, B. S., Huang, W. G., Liang, W. T., Rau, R. J., & Hirata, N. (2006). Anisotropy beneath an active collision orogen of Taiwan: Results from across islands array observations. Geophys. Res. Lett., 33(24).
Karato, S. I. (1998). Seismic anisotropy in the deep mantle, boundary layers and the geometry of mantle convection. In Geodynamics of Lithosphere & Earth’s Mantle (pp. 565-587). Birkhäuser Basel.
Kawai, K., Takeuchi, N., & Geller, R. J. (2006). Complete synthetic seismograms up to 2 Hz for transversely isotropic spherically symmetric media. Geophysical Journal International, 164(2), 411-424.
Klimetz, M. P. (1983). Speculations on the Mesozoic plate tectonic evolution of eastern China. Tectonics, 2(2), 139-166.
Klimetz, M. P. (1987). The Mesozoic Tectonostratigraphic Terranes and Accretionary Heritage of South‐Eastern Mainland Asia. Terrane Accretion and Orogenic Belts, 221-234.
Kuo, B. Y., Chen, C. C., & Shin, T. C. (1994). Split S waveforms observed in northern Taiwan: implications for crustal anisotropy. Geophys. Res. Lett., 21(14), 1491-1494.
Kuo‐Chen, H., Wu, F. T., Okaya, D., Huang, B. S., & Liang, W. T. (2009). SKS/SKKS splitting and Taiwan orogeny. Geophys. Res. Lett., 36(12).
Legendre, C. P., Deschamps, F., Zhao, L., Lebedev, S., & Chen, Q. F. (2014). Anisotropic Rayleigh wave phase velocity maps of eastern China. J. Geophys. Res.: Solid Earth, 119(6), 4802-4820.
Levin, V., Menke, W., & Park, J. (1999). Shear wave splitting in the Appalachians and the Urals: a case for multilayered anisotropy. J. Geophys. Res.: Solid Earth (1978–2012), 104(B8), 17975-17993.
Li, C., van der Hilst, R. D., Engdahl, E. R., & Burdick, S. (2008). A new global model for P wave speed variations in Earth′s mantle. G3, 9(5).
McNamara, D. E., Owens, T. J., Silver, P. G., & Wu, F. T. (1994). Shear wave anisotropy beneath the Tibetan Plateau. JOURNAL OF GEOPHYSICAL RESEARCH-ALL SERIES-, 99, 13-655.
Nicolas, A., & Christensen, N. I. (1987). Formation of Anisotropy in Upper Mantle Peridotites‐A Review. Composition, structure and dynamics of the lithosphere-asthenosphere system, 111-123. Park, J., & Levin, V. (2002). Seismic anisotropy: tracing plate dynamics in the mantle. Science, 296(5567), 485-489.
Plomerová, J., Šílený, J., & Babuška, V. (1996). Joint interpretation of upper-mantle anisotropy based on teleseismic P-travel time delays and inversion of shear-wave splitting parameters. Phys. Earth Planet. Inter., 95(3), 293-309.
Rau, R. J., Liang, W. T., Kao, H., & Huang, B. S. (2000). Shear wave anisotropy beneath the Taiwan orogen. Earth Planet. Sci. Lett., 177(3), 177-192.
Savage, M. K., & Silver, P. G. (1993). Mantle deformation and tectonics: constraints from seismic anisotropy in the western United States. Phys. Earth Planet. Inter., 78(3), 207-227.
Savage, P. E. (1999). Organic chemical reactions in supercritical water. Chem. Rev., 99(2), 603-622.
Shih, X. R., Meyer, R. P., & Schneider, J. F. (1989). An automated, analytical method to determine shear-wave splitting. Tectonophysics, 165(1), 271-278.
Silver, P. G. (1996). Seismic anisotropy beneath the continents: probing the depths of geology. Annu. Rev. Earth Planet. Sci., 24, 385-432.
Silver, P. G., & Chan, W. W. (1988). Implications for continental structure and evolution from seismic anisotropy. Nature, 335, 34-39.
Silver, P. G., & Chan, W. W. (1991). Shear wave splitting and subcontinental mantle deformation. J. Geophys. Res.: Solid Earth (1978–2012), 96(B10), 16429-16454.
Stein S. & Wysession M. (2003) An introduction to seismology, earthquakes, and earth structure. Blackwell Publishing Ltd., Oxford
Tang, V., Zhao, L., & Hung, S. H. (2015). Seismological evidence for a non-monotonic velocity gradient in the topmost outer core. Scientific reports, 5.
Vecsey, L., Plomerová, J., & Babuška, V. (2008). Shear-wave splitting measurements—problems and solutions. Tectonophysics, 462(1), 178-196.
Verma, R. K. (1960). Elasticity of some high-density crystals. J. Geophys. Res., 65, 757-766.
Vinnik, L. P., Kind, R., Kosarev, G. L., & Makeyeva, L. I. (1989). Azimuthal anisotropy in the lithosphere from observations of long-period S-waves. Geophys. J. Int., 99(3), 549-559.
Vinnik, L. P., Kosarev, G. L., & Makeeva, L. I. (1984). Lithosphere anisotropy from the observation of SKS and SKKS waves. Doklady Akademii Nauk SSSR, 278(6), 1335-1339.
Wong, W. H. (1927). Crustal movements and igneous activities in Eastern China since Mesozoic time. 1. Bull. Geol. Soc. China, 6(1), 9-37.
Wong, W. H. (1929). The Mesozoic Orogenic Movement in Eastern China. Bull. Geol. Soc. China, 8(1), 33-44.
Wüstefeld, A., Bokelmann, G., Zaroli, C., & Barruol, G. (2008). SplitLab: A shear-wave splitting environment in Matlab. Comput. Geosci., 34(5), 515-528.
Zhang, S. and S. Karato, Lattice preferred orientation of olivine aggregates deformed in sample shear, Nature, 375, 774-777, 1995.
王光杰, 滕吉文, & 張中杰. (2000). 中國華南大陸及陸緣地帶的大地構造基本格局. 地球物理學進展, 15(3), 25-44.
王椿鏞, 常利軍, 丁志峰, 劉瓊林, 廖武林, & FLESCH, L. M. (2014). 中國大陸上地幔各向異性和殼幔變形模式. 中國科學: 地球科學, 1, 011.
李四光. (1939). 中國地質學 (The geology of China). 李四光文集第一卷, 58. 6-9.
李兼海. (1998). 福建省構造運動. 構造層劃分及其主要特徵. 福建地質, 17(3). 115-130.
李恩慈. (2005). 利用臨時寬頻地震網觀測嘉義地區淺層地殼之非均向性. 國立中央大學地球物理研究所碩士論文, 1-78.
李霞. (2013). 福建省大地構造單元劃分及基本特徵. 世界地質, 32(3). 549-557.
林松建, 丁學仁, 陳為偉, & 陳祥熊. (2009). 福建地區震源機制解與現代構造應力場研究. 大地測量與地球動力學, 29(5), 27-32.
金振民. (1994). 橄欖石晶格優選方位和上地幔地震波速各相異性. 地球物理學報, 37(4), 469-477.
苗慶杰, 劉希強, 李永華, 周彥文, 鄭建常, 崔鑫, & 季愛東. (2011). 山東地區上地幔各相異性研究. 地震學報, 33(6), 746-754.
唐楚欣 (2014). 以 SmKS 波到時探討地球外核頂部的速度結構. 臺灣大學地質科學研究所學位論文, 1-89.
常利軍, 王椿鏞, & 丁志峰. (2009). 中國東部上地幔各向異性研究. 中國科學: D 輯, (9), 1169-1178.
張路, 曲國勝, & 陳建强. (2009). 福建東南沿海第四纪盆地構造沉降. 第四纪研究,29(3), 633-643.
梁文宗. (1990). 利用地震S波的分離作用探討臺灣北部地殼之非均向性. 國立臺灣大學海洋研究所碩士論文, 1-95.
彭筱涓. (2015). 利用剪力波分離探討中國大陸東南沿海地區的非均向性及其地體構造上之意涵. 國立中央大學地球物理研究所碩士論文, 1-128.
黃汲清. (1945). 中國主要構造地質單元. 地質論評.
蔡輝腾,金星, & 王善雄. (2014). 福建地區地殼上地幔速度结構研究進展. 地球物理學進展, (4), 1485-1490.
賴雅娟 (2009). 利用表面波探討造山帶地區的非均向性構造:以台灣及西藏高原為例國立中央大學地球物理研究所博士論文, 1-130. |