博碩士論文 103328021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.141.7.31
姓名 邱凱琳(Kai-Lin Chiou)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 雙電解槽電解水產氫之參數分析
(Parameter analysis of dual cell water electrolysis hydrogen production)
相關論文
★ 金屬粉末射出成型毛細吸附脫脂模擬★ 燃料電池複合式流道設計與膜電極組製程
★ 氣態鋅與水蒸氣混合之流場與反應爐參數分析★ 利用化學水浴沉積法製作Ni-ZnO光電極之研究
★ 電解水產氫之電解液流場效應分析★ 以化學水浴法製備AgInS2可見光光電極及其摻雜銅之研究
★ 高溫高壓之電解水產氫效率分析★ 超音波場下電解水產氫之效應分析
★ 以化學水浴法製備氧化鋅光電極薄膜之研究★ 以化學浴沉積法製備四元化合物光電極薄膜之研究
★ 利用化學水浴法鍍製二氧化鈦光電極薄膜之研究★ 以化學浴沉積法製備Cu-In-S化合物光電極薄膜之研究
★ 以化學浴沉積法製備β-In2S3化合物光電極薄膜之研究★ 以化學浴沉積法製備不同結構氧化鋅光電極薄膜之研究
★ 電解水產氫中極化作用之分析與研究★ 磁場對水電解產氫效率增益之機制研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 水電解產氫是目前製造氫氣常用之方法,而氫氣具有乾淨且對環境友善的特性,在未來相當具發展潛力,若能結合工業用的酸鹼廢液產氫,可減少廢棄物的增生,達到清潔生產的目的。
本實驗使用鎳為電極片,並應用硫酸及氫氧化鉀兩種溶液為電解液與Nafion質子交換膜隔離雙槽,進行電解水產氫之研究。並應用恆電位儀及氣體流量計記錄所得到的數據資料,探討不同濃度、單雙槽、電解液的不同對輸入電流、產氫量及能源效率的影響,並以增加電解液溫度、使用不同Nafion質子交換膜,及降低電位等參數,以研析其對產氫量及能源效率的提升效果。
實驗結果顯示,雙槽使用恆電位儀在5.5V的電位下,並搭配Nafion質子交換膜N212,能源效率最高可達65.9%,就單雙槽之比較,在相同濃度0.25M或0.5M時,雙槽不同電解液的能源效率皆優於單槽。若做溫度提升,溫度達40 ℃時,能源效率可提升至68.1%,50 ℃可提升80.1%,而產氫量皆有明顯的增加,如改用Nafion質子交換膜N211,能源效率皆有提升,且最高可提升到80.7%。如果降低電位時能源效率也皆有明顯提升的現象,在3.5V時能源效率更可提升到89.9%。
摘要(英) Water electrolysis hydrogen production is a common method for hydrogen production currently. Since hydrogen has a clean and environmentally friendly feature, it has considerable potential to be the energy resource in the future. If acid and alkaline waste solutions are used to produce hydrogen for industrial use, it can reduce the proliferation of industry waste to achieve the purpose of clean production.
In this study, using nickel sheets as electrodes, and applying two solutions of sulfuric acid and potassium hydroxide as the electrolytes contained in dual cells which are separated by a Nafion proton exchange membrane, water electrolysis hydrogen production is studied. By the use of potentiostat and gas flow meter to record the experimental data, the effects of working parameters, such as concentrations, single or dual-cell, and kind of electrolytes, on the resulted current, hydrogen production and energy efficiency are investigated. In addition, the influences of electrolyte temperature, thickness of Nafion and applied voltage upon the enhancement of hydrogen production and energy efficiency are also studied.
Results show that dual cell using potentiaostat at 5.5V with a Nafion N212 yields a energy efficiency up to 65.9%. At concentration of 0.25M and 0.5M, energy efficiencies in dual cell with different electrolytes are superior to that in single-cell. If the temperature is increased to 40 ℃, the energy efficiency could be increased to 68.1%, while it could even be raised to 80.1% at 50 ℃. The amount of hydrogen production are also increased significantly at the same time. If proton exchange membrane Nafion N211 was used instead of Nafion N212, the energy efficiency was improved, and even as high as 80.7%. Energy efficiency can also be improved when the applied voltage is low, e.g. , as potential at 3.5V, the energy efficiency is even enhanced to 89.9%.
關鍵字(中) ★ 水電解
★ 雙電解槽
★ 質子交換膜
關鍵字(英) ★ water electrolysis
★ dual cell
★ proton exchange membrane
論文目次 摘要 I
ABSTRACT II
目錄 IV
表目錄 VIII
圖目錄 IX
符號說明 XIII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-3 研究目的與動機 6
第二章 理論基礎 8
2-1 電解水產氫之基本原理 8
2-2 電解電壓 9
2-2-1 理論電解電壓 9
2-2-2 實際分解電壓 10
2-3 法拉第電解定律 10
2-4 吉布斯自由能 11
2-5 極化作用 12
2-5-1 濃度極化 12
2-5-2 活性極化 13
2-5-3 歐姆極化 13
2-6 離子輸送數 14
2-7 質子交換膜 15
2-8 導電度 16
2-9 溫度影響反應速率 16
2-10 燃料熱值 17
2-11 效率 18
2-11-1 電流與產氫量 18
2-11-2 氫氣熱值 18
2-11-3 電功率 19
2-11-4 能源效率 19
第三章 實驗裝置 20
3-1 實驗用品 20
3-1-1 實驗藥品 20
3-1-2 實驗材料 21
3-2 實驗儀器 22
3-2-1 恆電位儀 22
3-2-2 溫度量測器 22
3-2-3 磁石攪拌器 22
3-2-4 導電度量測器 23
3-2-5 氣體質量流量計 23
3-2-6 數位三用電錶 23
3-2-7 直流電源供應器 24
3-2-8 Nafion質子交換膜 24
3-2-9 加熱器 24
3-3 實驗架設 24
3-4 實驗變數 26
3-5 實驗步驟 26
第四章 結果與討論 30
4-1 雙槽電解液等莫爾濃度下之產氫量 31
4-2 雙槽電解液非等莫爾濃度之產氫量 32
4-3 單槽電解液之產氫量 35
4-4 相同電解液加裝Nafion質子交換膜之產氫量 37
4-5 電解液溫度變化對產氫之影響 39
4-6 不同電解電位對產氫之影響 41
4-7 Nafion質子交換膜 N212與N211對產氫之影響 42
第五章 結論與未來展望 45
5-1 結論 45
5-2 未來展望 47
參考文獻 49
表 53
圖 57
參考文獻 [1]G. W. Crabtree, M. S. Dresselhaus, and M. V. Buchanan, “Hydrogen Economy,” Physics Today, Vol. 57, pp. 39 (2004). http://www.physicstoday.org
[2]許嘉顯,磁場對多電極電解水產氫之影響,國立中央大學能源工程研究所碩士論文 (2015)。
[3]陳維新,能源概論第八版,高立出版社,Ch.8 (2015)。
[4]洪俊智,“「氫」經濟的發展與前瞻",鉅變新視界電子報。(2015-02-11),http://rsprc.ntu.edu.tw/zh-TW/
[5]A. R. Zeradjanin , A. A. Topalov, S. Cherevko, and G. P. Keeley, “ Sustainable generation of hydrogen using chemicals with regional oversupply-Feasibility of the electrolysis in acido-alkaline reactor,” International Journal of Hydrogen Energy, Vol. 39, pp. 16275-16281 (2014).
[6]R. F. de Souza, J. C. Padilha, R. S. Gonçalves, and J. Rault-Berthelot, “Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis,” Electrochemistry Communications, Vol. 8, pp. 211-216 (2006).
[7]T. Take, K. Tsurutani, and M. Umeda, “Hydrogen production by methanol-water solution electrolysis,” Journal of Power Sources, Vol. 164, pp. 9-16 (2007).
[8]熊楚強等,電化學,大揚出版社,Ch.3-Ch.4 (1997)。
[9]M. P. M. Kaninski, D. P. Saponjic, V. M.Nikolic, D. L. Zugic, and G. S. Tasic, “Energy consumption and stability of the Ni-Mo electrodes for the alkaline hydrogen production at industrial conditions,” International Journal of Hydrogen Energy, Vol. 36, pp. 8864-8868 (2011).
[10]V. M. Nikolic, G. S. Tasic, A. D. Maksic , D. P. Saponjic , S. M. Miulovic, and M. P. M.Kaninski, “Raising efficiency of hydrogen generation from alkaline water electrolysis-Energy saving,” International Journal of Hydrogen Energy, Vol. 35, pp. 12369-12373 (2010).
[11]S. Cherevko , A. A.Topalov, A. R. Zeradjanin, G. P. Keeley, and K. J. J. Mayrhofer,“Temperature-dependent dissolution of polycrystalline platinum in sulfuric acid electrolyte,” Electrocatalysis, Vol. 5, pp. 235-240 (2014).
[12]P. K.Dubey, A. S. K.Sinha, S. Talapatra, N. Koratkar, P. M. Ajayan, and O. N. Srivastava, “Hydrogen generation by water electrolysis using carbon nanotube anode,” International Journal of Hydrogen Energy, Vol. 35, pp. 3945-3950 (2010).
[13]S. K. Mazloomi and N. Sulaiman, “Influencing factors of water electrolysis electrical efficiency,” Renewable and Sustainable Energy Reviews, Vol. 16, pp. 4257- 4263 (2012).
[14]Ryan O’Hayre等,王曉紅等編譯,燃料電池基礎,全華圖書有限公司印行,Ch.4 (2008).
[15]J. Payne (Partially From His Master′s Research), “ Nafion-perfluorosulfonate ionomer,” http://www.psrc.usm.edu/mauritz/Nafion.html (April 2005).
[16]Y. S. Kawano , Y. Q. Wang, R. A. Palmer, and S. R. Aubuchon “Stress-strain curves of Nafion membranes in acid and salt forms,” Ciência e Tecnologia, n° 2 ,Vol. 12, pp. 96-101 (2002).
[17]H. Su, B. J. Bladergroen, S. Pasupathi, V. Linkov, and S. Ji, “Performance investigation of membrane electrode assemblies for hydrogen production by solid polymer electrolyte water electrolysis,” International Journal of Electrochemistry Science, Vol. 7, pp. 4223- 4234 (2012).
[18]P. Ridge, “Hydrogen manufacture by electrolysis, thermal decomposition and unusual techniques,” Noyes Data Corporation, New Jersey, M. S. Casper (1978).
[19]Q. Duan, H. Wang, and J. Benziger, “Transport of liquid water through Nafion membranes,” Journal of Membrane Science, Vol. 392-393, pp. 88-99 (2012).
[20]K. Richa, Buddhi D., and Sawhney R. L., “Studies on the effect of temperature of the electrolytes on the rate of production of hydrogen,"International Journal of Hydrogen Energy, Vol. 30, pp. 261 - 263, (2005).
[21]J. C. Ganley, “High temperature and pressure alkaline electrolysis,” International Journal of Hydrogen Energy, Vol. 34, pp. 3604-3611 (2008).
[22]A. Brisse, J. Schefold, and M. Zahid, “High temperature water electrolysis in solid oxide cells,” International Journal of Hydrogen Energy, Vol. 33, pp. 5375-5382 (2008).
[23]J. Udagawa, P. Aguiar, and N. P. Brandon, “Hydrogen production through steam electrolysis: Model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell,” Journal of Power Sources, Vol. 166, pp. 127-136 (2007).
[24]A. Caravaca, F. M. Sapountzi, A. De Lucas-Consuegra, C. Moleina-Mora, F. Dorado, and J. L. Valverde, “Electrochemical reforming of ethanol-water solutions for pure H2 production in PEM electrolysis,” International Journal of Hydrogen Energy, Vol. 37, pp. 9504-9513 (2012).
[25]P. Millet and S. Grigoriev, Water electrolysis technologies, Renewable hydrogen technologies, chapter 2, pp. 19-41 (2013).
[26]田福助,電化學基本原理與應用,五洲出版社,pp. 1-205 (2004)。
[27]魚崎浩平,喜多英明同撰,黃忠良譯,基本電化學,復漢出版社,pp.10-81 (1983)。
[28]J. Koryta, W. Dvorak, and L. Kavan, Principles of electrochemistry, Second edition, John Wiley and Sons, New York (1993).
[29]毛宗強,氫能-21世紀的綠色能源,新文京開發出版股份有限公司,pp.329-536 (2008)
[30]R. C. Reid, J. M. Prausnitz, and E. E. Poling, The Propertities of gases and liquids, Fourth edition, McGraw-Hill, New York (1987).
[31]J. M. Gras and P. Spiteri, “Corrosion of stainless steels and nickel based alloys for alkaline water electrolysis,” International Journal of Hydrogen Energy, Vol. 18, pp. 561-566 (1993).
[32]宋宛倫,超音波應用對於電解水產氫氣阻現象影響之研究,國立雲林科技大學環境與安全衛生工程系碩士論文 (2008)。
[33]沈世勳,質子交換膜產氫反應器與自加壓設計高壓性能研究,國 立中央大學機械工程研究所碩士論文 (2009)。
指導教授 洪勵吾(Lih-Wu Hourng) 審核日期 2016-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明