![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:11 、訪客IP:52.14.236.216
姓名 吳欣芳(Sin-Fang Wu) 查詢紙本館藏 畢業系所 財務金融學系 論文名稱 幾乎隨機優越投資策略於台灣股票市場之應用
(Exploiting almost first-degree stochastic dominance to generate abnormal stock returns)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 此篇論文藉由一階幾乎隨機優越(Almost First-Degree Stochastic Dominance, AFSD)選股法則建構投資組合,採取反向策略買進過去表現較差(AFSD dominated)、放空過去表現較佳(AFSD dominant)的股票以檢視其股價報酬是否有顯著之超額報酬。相較於最為廣泛使用的平均數-變異數準則(Mean-Variance framework),幾乎隨機優越法則不需要假設特定的報酬類型或是效用函數,僅以報酬率排序分析的方式判斷風險性資產的優越性。我們以台灣股票市場的上市公司作為研究標的,樣本期間從2010年1月至2014年12月,探討由過去6個月排序期為基礎的幾乎隨機優越投資策略,在各個持有期之下是否具有統計顯著的正報酬。
實證結果顯示,無論持有期為3個月、6個月、9個月或是一年,幾乎隨機優越投組皆能獲得統計顯著的超額報酬,並經Carhart的四因子迴歸模型進一步解釋台灣股票報酬的異常性。此外,我們亦針對一階幾乎隨機優越的篩選準則進行穩健性分析,隨著AFSD臨界值(critical value)的改變,每個移動窗格內投組所含的股數也跟著變動,然而,其績效表現仍具統計顯著的正報酬。摘要(英) The purpose of this study is to construct zero-cost portfolios based on almost first-degree stochastic dominance (AFSD) rules and then examine the performance of these arbitrage portfolios. By longing dominant stocks and short selling dominated stocks, our investment strategy hypothesize that past losers will outperform in the future. Compared with the most widely accepted Mean-Variance framework, AFSD rules require neither a specific return distribution nor a specific utility function. It allows small violation of stochastic dominance and considers the preference of “most” investors.
Our empirical treatment targets public firms in Taiwan stock market from 2010/01/01 to 2014/12/31. We form portfolios through the previous 6-month ranking period and hold them up to 12 months. All results show that AFSD portfolios produce statistically, significant excess returns. Moreover, these returns are robust with Carhart four-factor model under various criteria of the AFSD investment strategy.關鍵字(中) ★ 幾乎隨機優越
★ 投資組合
★ 反向策略關鍵字(英) ★ almost first-degree of stochastic dominance
★ investment portfolio
★ contrarian strategy論文目次 中文摘要 v
Abstract vi
誌謝 vii
Table of Contents viii
List of Figures iix
List of Tables iix
Section 1 Introduction 1
Section 2 From stochastic dominance to almost stochastic dominance 3
2.1 Expected utility paradigm and investor preference 3
2.2 Stochastic dominance rules: FSD and SSD 4
2.21 First-Degree Stochastic Dominance Rule 4
2.22 Second-Degree Stochastic Dominance Rule 7
2.3 Almost stochastic dominance rules 7
2.31 Almost First-Degree stochastic dominance 9
Section 3 Data and methodology 11
3.1 Data collection 11
3.2 Methodology 13
Section 4 Results 16
4.1 Returns of AFSD arbitrage portfolios under 2 times standard deviations 16
4.2 Carhart four-factor model 19
Section 5 Robustness check 19
5.1 Returns of AFSD arbitrage portfolios under 1.5 times standard deviations 20
5.2 Returns of AFSD arbitrage portfolios under 2.5 times standard deviations 21
Section 6 Conclusions 23
References 25參考文獻 [1] Bali, T. G., Demirtas, K. O., Levy, H., & Wolf, A. (2009). Bonds versus stocks: Investors’ age and risk taking. Journal of Monetary Economics, 56(6), 817-830.
[2] Bondt, W. F., & Thaler, R. (1985). Does the stock market overreact? Journal of Finance, 40(3), 793-805.
[3] Bondt, W. F., & Thaler, R. H. (1987). Further evidence on investor overreaction and stock market seasonality. Journal of Finance, 42(3), 557-581.
[4] Carhart, M. M. (1997). On persistence in mutual fund performance. Journal of Finance, 52(1), 57-82.
[5] Clark, E. and K. Kassimatis (2014). "Exploiting stochastic dominance to generate abnormal stock returns." Journal of Financial Markets, 20: 20-38.
[6] Conrad, J., & Kaul, G. (1998). An anatomy of trading strategies. Review of Financial Studies, 11(3), 489-519.
[7] Fama, E. F., & French, K. R. (1996). Multifactor explanations of asset pricing anomalies. Journal of Finance, 51(1), 55-84.
[8] Fu, H., Hsu, Y. C., Huang, R. J., & Tzeng, L. Y. (2015). To hedge or not to hedge? Evidence via almost stochastic dominance. (working paper)
[9] Hadar, J., & Russell, W. R. (1971). Stochastic dominance and diversification. Journal of Economic Theory, 3(3), 288-305.
[10] Hanoch, G., & Levy, H. (1969). The efficiency analysis of choices involving risk. The Review of Economic Studies, 36(3), 335-346.
[11] Levy, H., & Markowitz, H. M. (1979). Approximating expected utility by a function of mean and variance. American Economic Review, 69(3), 308-317.
[12] Levy, H. (2015). Stochastic dominance: Investment decision making under uncertainty. Springer.
[13] Leshno, M., & Levy, H. (2002). Preferred by “all” and preferred by “most” decision makers: Almost stochastic dominance. Management Science, 48(8), 1074-1085.
[14] Levy, M. (2009). Almost stochastic dominance and stocks for the long run. European Journal of Operational Research, 194(1), 250-257.
[15] Lo, A. W., & MacKinlay, A. C. (1990). When are contrarian profits due to stock market overreaction? Review of Financial Studies, 3(2), 175-205.
[16] Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77-91.
[17] Rothschild, M., & Stiglitz, J. E. (1970). Increasing risk: I. A definition. Journal of Economic theory, 2(3), 225-243.
[18] Tzeng, L. Y., Huang, R. J., & Shih, P. T. (2013). Revisiting almost second-degree stochastic dominance. Management Science, 59(5), 1250-1254.
[19] Tsetlin, I., Winkler, R. L., Huang, R. J., & Tzeng, L. Y. (2015). Generalized almost stochastic dominance. Operations Research, 63(2), 363-377.
[20] Von Neumann, J., & Morgenstern, O. (2007). Theory of games and economic behavior. Princeton university press.指導教授 黃瑞卿(Rachel Juiching Huang) 審核日期 2016-7-25 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare