參考文獻 |
1. 張紹勳(2012)。模糊多準則評估法及統計。台灣五南圖書出版股份有限公司。
2. 鄧振源(2004)。計畫評估-方法與應用(2 版)。基隆:運籌規劃與管理研究中心。
3. 古永嘉及楊雪蘭(2009)。企業研究方法,華泰文化。
4. 鄧振源(2012)。多準則決策分析方法與應用。台北市: 鼎茂圖書.
5. 戚玉樑(2005)。以本體技術為基礎的知識庫建置程序及其應用。資訊科技與社會,5(2),1-18。
6. 資策會官方網站。取自http://www.iii.org.tw/About/Department.aspx?dp_sqno
=1&fm_sqno=36
7. Aaen, I. (2008). Essence: facilitating software innovation. European Journal of Information Systems, 17(5), 543-553.
8. Bannerman, P. L. (2008). Risk and risk management in software projects: A reassessment. Journal of Systems and Software, 81(12), 2118-2133.ISO 690
9. Boehm, B. W. (1991). Software risk management: principles and practices. Software, IEEE, 8(1), 32-41.
10. Bowles, J. B. (1998). The new SAE FMECA standard. In Reliability and Maintainability Symposium.
11. Caballero-Luque, A., Aragonés-Beltrán, P., García-Melón, M., & Dema-Pérez, C. , 2010. Analysis of the alignment of company goals to web content using ANP.
International Journal of Information Technology & Decision Making, 9(03), 419-436.
12. Carr, M. J., Konda, S. L., Monarch, I., Ulrich, F. C., & Walker, C. F.(1993).Taxonomy-based risk identification (No. CMU/SEI-93-TR-06).
13. Carr, V., & Tah, J. H. M. (2001). A fuzzy approach to construction project risk assessment and analysis: construction project risk management system. Advances
in Engineering software, 32(10), 847-857.
14. Catal, C. (2011). Software fault prediction: A literature review and current trends.
Expert systems with applications, 38(4), 4626-4636.
15. Charette, R. N. (2005). Why software fails. IEEE spectrum, 42(9), 36.
16. Charette, R.N., 1989. Software Engineering Risk Analysis and Management. McGraw Hill, New York.
17. Chen, C. Y., & Chong, P. P. (2011). Software engineering education: A study on conducting collaborative senior project development. Journal of systems and Software, 84(3), 479-491.
18. Chung, S. H., Lee, A. H., & Pearn, W. L. (2005). Analytic network process (ANP) approach for product mix planning in semiconductor fabricator. International
Journal of Production Economics, 96(1), 15-36.
19. Darke, P., Shanks, G., & Broadbent, M. (1998). Successfully completing case study research: combining rigour, relevance and pragmatism. Information systems
journal, 8(4), 273-289.
20. Demirtas, E. A., & Ustun, O. (2009). Analytic network process and multi-period goal programming integration in purchasing decisions. Computers & Industrial
Engineering, 56(2), 677-690.
21. Dhlamini, J., Nhamu, I., & Kaihepa, A. (2009, June). Intelligent risk management tools for software development. In Proceedings of the 2009 Annual Conference of the Southern African Computer Lecturers′ Association (pp. 33-40). ACM.
22. Diekmann, J. E. (1992). Risk analysis: lessons from artificial intelligence. International Journal of Project Management, 10(2), 75-80.
23. Du, S., Keil, M., Mathiassen, L., Shen, Y., & Tiwana, A. (2007). Attention-shaping tools, expertise, and perceived control in IT project risk assessment. Decision
Support Systems, 43(1), 269-283.
24. Ergu, D., Kou, G., Shi, Y., & Shi, Y. (2014). Analytic network process in risk assessment and decision analysis. Computers & Operations Research, 42, 58-74.
25. Ericson, C. A., & Ll, C. (1999). Fault tree analysis. In System Safety Conference (pp. 1-9).
26. Falbo, R. A., Ruy, F. B., Bertollo, G., & Togneri, D. F.(2004). Learning how to manage risks using organizational knowledge. In Advances in Learning Software Organizations (pp. 7-18).
27. Fan, C. F., & Yu, Y. C. (2004). BBN-based software project risk management. Journal of Systems and Software, 73(2), 193-203.
28. Fang, C., & Marle, F. (2012). A simulation-based risk network model for decision support in project risk management. Decision Support Systems, 52(3), 635-644.
29. Giaretta, P., & Guarino, N. (1995). Ontologies and knowledge bases towards a terminological clarification. Towards very large knowledge bases: knowledge
building & knowledge sharing, 25, 32.
30. Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing?. International journal of human-computer studies, 43(5),
907-928.
31. Hafeez, K., Zhang, Y., & Malak, N. (2002). Determining key capabilities of a firm using analytic hierarchy process. International journal of production economics, 76(1), 39-51.
32. Han, W. M., & Huang, S. J. (2007). An empirical analysis of risk components and performance on software projects. Journal of Systems and Software, 80(1), 42-50.
33. Heal, G., & Kunreuther, H. (2007). Modeling interdependent risks. Risk Analysis, 27(3), 621-634.
34. Higuera, R. P., & Haimes, Y. Y. (1996). Software Risk Management (No. CMU/SEI-96-TR-012). CARNEGIE-MELLON UNIV PITTSBURGH PASOFTWARE ENGINEERING INST.
35. Hillson, D. (2002). Extending the risk process to manage opportunities. International Journal of project management, 20(3), 235-240.
36. Horrocks, I., Patel-Schneider, P. F., Bechhofer, S., & Tsarkov, D. (2005). OWL rules: A proposal and prototype implementation. Web Semantics: Science, Services and Agents on the World Wide Web, 3(1), 23-40.
37. Hu, Y., Huang, J., Chen, J., Liu, M., & Xie, K. (2007, August). Software project risk management modeling with neural network and support vector machine
approaches. In Natural Computation, 2007. ICNC 2007. Third International Conference on (Vol. 3, pp. 358-362). IEEE.
38. Jiang, J. J., Klein, G., & Discenza, R. (2001). Information system success as impacted by risks and development strategies. IEEE Transactions on Engineering
Management, 48(1), 46-55.
39. Joorabchi, M. E., Mesbah, A., & Kruchten, P. (2013). Real challenges in mobile app development. In Empirical Software Engineering and Measurement, 2013 ACM/IEEE International Symposium on (pp. 15-24).
40. Karolak, D.W., (1996). Software Engineering Risk Management. IEEE Computer Society Press.
41. Lee, E., Park, Y., & Shin, J. G. (2009). Large engineering project risk management using a Bayesian belief network. Expert Systems with Applications, 36(3), 5880-5887.
42. Lee, J. W., & Kim, S. H. (2000). Using analytic network process and goal programming for interdependent information system project selection. Computers & Operations Research, 27(4), 367-382.
43. Manifesto, C. H. A. O. S. (2013). The Standish Group International.
44. Marcelino-Sádaba, S., Pérez-Ezcurdia, A., Lazcano, A. M. E., & Villanueva, P. (2014). Project risk management methodology for small firms. International Journal of Project Management, 32(2), 327-340.
45. Momoh, J. A. & Zhu, J., (2003). Optimal Generation Scheduling Based on AHP/ANP. IEEE Transaction on System, Man, & Cybernetics Part B: Cybernetics, 33(3), 531-535.
46. Neef, D., (2005). Managing corporate risk through better knowledge management. The Learning Organization 12 (2), 112–124.
47. Neumann, D. E. (2002). An enhanced neural network technique for software risk analysis. IEEE Transactions on software engineering, 28(9), 904-912.
48. Niemira, M. P., & Saaty, T. L. (2004). An analytic network process model for financial-crisis forecasting. International Journal of Forecasting, 20(4), 573-587.
49. PMI, S. C. (2013). A Guide to the Project Management Body of Knowledge (PMBOK) (2013 ed.), Project Management Institute, Newton Square, PA, USA, 2013.
50. Pressman, R. S. (2005). Software engineering: a practitioner′s approach. Palgrave Macmillan.
51. Raz, T., & Michael, E. (2001). Use and benefits of tools for project risk management. International journal of project management, 19(1), 9-17.
52. Saaty, T. L. (1996). Analytical network process. Pittsburgh: RWS Publications.
53. Seaman, C. B. (1999). Qualitative methods in empirical studies of software engineering. IEEE Transactions on software engineering, 25(4), 557-572.
54. Seliya, N., & Khoshgoftaar, T. M. (2007). Software quality estimation with limited fault data: a semi-supervised learning perspective. Software Quality Journal, 15(3), 327-344.
55. Simister, S. J.(2004). Qualitative and quantitative risk management. The Wiley guide to managing projects, 30-47.
56. Standish Group International, Inc. (2009) CHAOS Summary 2009. report. from: https://www.classes.cs.uchicago.edu/archive/2014/fall/512101/required.reading/ Standish.Group.Chaos.2009.pdf. Retrieved April 5, 2016.
57. Taroun, A. (2014). Towards a better modelling and assessment of construction risk: Insights from a literature review. International Journal of Project Management, 32(1), 101-115.
58. Wallace, L., Keil, M., & Rai, A. (2004). Understanding software project risk: a cluster analysis. Information & Management, 42(1), 115-125.
59. Wang, Q., Zhu, J., & Yu, B. (2007, April). Feature selection and clustering in software quality prediction. In Proceedings of the 11th international conference
on Evaluation and Assessment in Software Engineering, EASE (Vol. 7, pp. 21-32).
60. Ward, S., & Chapman, C. (2004). Making risk management more effective.
61. Warkentin, M., Moore, R. S., Bekkering, E., & Johnston, A. C. (2009). Analysis of systems development project risks: An integrative framework. ACM SIGMIS
Database, 40(2), 8-27.
62. Wasserman, A. I. (2010). Software engineering issues for mobile application development. In Proceedings of the FSE/SDP workshop on Future of software engineering research (pp. 397-400). ACM.
63. Yang, B., Yin, Q., Xu, S., & Guo, P. (2008). Software quality prediction using affinity propagation algorithm. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) (pp. 1891-1896). |