參考文獻 |
[1] C. Oerlemans, W. Bult, M. Bos, G. Storm, J.F.W. Nijsen, W.E. Hennink, Polymeric micelles in anticancer therapy: targeting, imaging and triggered release, Pharmaceutical research, 27 (2010) 2569-2589.
[2] V.P. Torchilin, Structure and design of polymeric surfactant-based drug delivery systems, Journal of controlled release, 73 (2001) 137-172.
[3] G. Gaucher, M.H. Dufresne, V.P. Sant, N. Kang, D. Maysinger, J.C. Leroux, Block copolymer micelles: preparation, characterization and application in drug delivery, J Control Release, 109 (2005) 169-188.
[4] G. Gaucher, P. Satturwar, M.C. Jones, A. Furtos, J.C. Leroux, Polymeric micelles for oral drug delivery, Eur J Pharm Biopharm, 76 (2010) 147-158.
[5] M.-C. Jones, J.-C. Leroux, Polymeric micelles–a new generation of colloidal drug carriers, European journal of pharmaceutics and biopharmaceutics, 48 (1999) 101-111.
[6] Z. Sezgin, N. Yuksel, T. Baykara, Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs, Eur J Pharm Biopharm, 64 (2006) 261-268.
[7] K.E. Wong, M.C. Mora, M. Skinner, S. McRae Page, G.M. Crisi, R.B. Arenas, S.S. Schneider, T. Emrick, Evaluation of PolyMPC-Dox Prodrugs in a Human Ovarian Tumor Model, Mol Pharm, 13 (2016) 1679-1687.
[8] C. Giacomelli, L. Le Men, R. Borsali, J. Lai-Kee-Him, A. Brisson, S.P. Armes, A.L. Lewis, Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles: light scattering, electron microscopy, and fluorescence experiments, Biomacromolecules, 7 (2006) 817-828.
[9] B. Yu, A.B. Lowe, K. Ishihara, RAFT synthesis and stimulus-induced self-assembly in water of copolymers based on the biocompatible monomer 2-(methacryloyloxy) ethyl phosphorylcholine, Biomacromolecules, 10 (2009) 950-958.
[10] J.P. Xu, J. Ji, W.D. Chen, J.C. Shen, Novel biomimetic surfactant: synthesis and micellar characteristics, Macromol Biosci, 5 (2005) 164-171.
[11] X. Zhao, Z. Zhang, F. Pan, T.A. Waigh, J.R. Lu, Plasmid DNA complexation with phosphorylcholine diblock copolymers and its effect on cell transfection, Langmuir, 24 (2008) 6881-6888.
[12] S.-i. Yusa, K. Fukuda, T. Yamamoto, K. Ishihara, Y. Morishima, Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent, Biomacromolecules, 6 (2005) 663-670.
[13] K. Ishihara, Phospholipid polymers. Encyclopedia of Polymer Science and Technology, in, New York (NY): John Wiley & Sons, Inc, 2012.
[14] S. Singer, G.L. Nicolson, The fluid mosaic model of the structure of cell membranes, Membranes and Viruses in Immunopathology; Day, SB, Good, RA, Eds, (1972) 7-47.
[15] R. Zwaal, P. Comfurius, L. Van Deenen, Membrane asymmetry and blood coagulation, (1977).
[16] F. Daemen, H. HART, C. van der Drift, L. VAN DEENEN, ACTIVITY OF SYNTHETIC PHOSPHOLIPIDS IN BLOOD COAGULATION, Thrombosis et diathesis haemorrhagica, 13 (1965) 194.
[17] M. Hess, R.G. Jones, J. Kahovec, T. Kitayama, P. Kratochvíl, P. Kubisa, W. Mormann, R. Stepto, D. Tabak, J. Vohlídal, Terminology of polymers containing ionizable or ionic groups and of polymers containing ions (IUPAC Recommendations 2006), Pure and Applied Chemistry, 78 (2006) 2067-2074.
[18] A. Laschewsky, Structures and synthesis of zwitterionic polymers, Polymers, 6 (2014) 1544-1601.
[19] N. Tarannum, M. Singh, Advances in synthesis and applications of sulfo and carbo analogues of polybetaines: a review, Reviews in Advanced Sciences and Engineering, 2 (2013) 90-111.
[20] T. Alfrey Jr, H. Morawetz, E.B. Fitzgerald, R.M. Fuoss, Synthetic electrical analog of proteins1, Journal of the American Chemical Society, 72 (1950) 1864-1864.
[21] Z. Zhang, T. Chao, S. Jiang, Physical, chemical, and chemical-physical double network of zwitterionic hydrogels, The Journal of Physical Chemistry B, 112 (2008) 5327-5332.
[22] L. Carr, G. Cheng, H. Xue, S. Jiang, Engineering the polymer backbone to strengthen nonfouling sulfobetaine hydrogels, Langmuir, 26 (2010) 14793-14798.
[23] S. Jiang, Z. Cao, Ultralow‐fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications, Advanced Materials, 22 (2010) 920-932.
[24] R. Zwaal, H.C. Hemker, Blood cell membranes and haemostasis, Pathophysiology of Haemostasis and Thrombosis, 11 (1982) 12-39.
[25] K. Ishihara, K. Fukumoto, Y. Iwasaki, N. Nakabayashi, Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion, Biomaterials, 20 (1999) 1553-1559.
[26] M. Kojima, K. Ishihara, A. Watanabe, N. Nakabayashi, Interaction between phospholipids and biocompatible polymers containing a phosphorylcholine moiety, Biomaterials, 12 (1991) 121-124.
[27] L. Wu, Z. Guo, S. Meng, W. Zhong, Q. Du, L.L. Chou, Synthesis of a zwitterionic silane and its application in the surface modification of silicon-based material surfaces for improved hemocompatibility, ACS applied materials & interfaces, 2 (2010) 2781-2788.
[28] K. Ishihara, T. Ueda, N. Nakabayashi, Preparation of phospholipid polymers and their properties as polymer hydrogel membranes, Polym J, 22 (1990) 355-360.
[29] Y. Kadoma, N. Nakabayashi, E. Masuhara, J. Yamauchi, Synthesis and hemolysis test of polymer containing phosphorylcholine groups, Kobunshi Ronbunshu, 35 (1978) 423-427.
[30] Y. Iwasaki, M. Ijuin, A. Mikami, N. Nakabayashi, K. Ishihara, Behavior of blood cells in contact with water‐soluble phospholipid polymer, Journal of biomedical materials research, 46 (1999) 360-367.
[31] T. Nakaya, H. Toyoda, M. Imoto, Polymeric Phospholipid Analogues XIII. Synthesis and Properties of Vinyl Polymers Containing Phosphatidyl Choline Groups, Polymer journal, 18 (1986) 881-885.
[32] A.L. Lewis, A.W. Lloyd, Biomedical Applications of Biomimetic Polymers: The Phosphorylcholine‐Containing Polymers, Biomimetic, Bioresponsive, and Bioactive Materials: An Introduction to Integrating Materials with Tissues, (2012) 95-140.
[33] G. Hu, S.S. Parelkar, T. Emrick, A facile approach to hydrophilic, reverse zwitterionic, choline phosphate polymers, Polymer Chemistry, 6 (2015) 525-530.
[34] X. Yu, X. Yang, S. Horte, J.N. Kizhakkedathu, D.E. Brooks, ATRP synthesis of poly(2-(methacryloyloxy)ethyl choline phosphate): a multivalent universal biomembrane adhesive, Chem Commun (Camb), 49 (2013) 6831-6833.
[35] G. Hu, T. Emrick, Functional Choline Phosphate Polymers, J Am Chem Soc, 138 (2016) 1828-1831.
[36] V. Mishra, R. Kumar, Living radical polymerization: A review, Journal of Scientific Research, 56 (2012) 141-176.
[37] A.B. Lowe, C.L. McCormick, Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media, Progress in Polymer Science, 32 (2007) 283-351.
[38] K. Matyjaszewski, Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives, Macromolecules, 45 (2012) 4015-4039.
[39] N.V. Tsarevsky, K. Matyjaszewski, "Green" atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials, Chem Rev, 107 (2007) 2270-2299.
[40] G. Moad, Y.K. Chong, A. Postma, E. Rizzardo, S.H. Thang, Advances in RAFT polymerization: the synthesis of polymers with defined end-groups, Polymer, 46 (2005) 8458-8468.
[41] G. Moad, E. Rizzardo, S.H. Thang, Radical addition–fragmentation chemistry in polymer synthesis, Polymer, 49 (2008) 1079-1131.
[42] R.D. Puts, D.Y. Sogah, Control of living free-radical polymerization by a new chiral nitroxide and implications for the polymerization mechanism, Macromolecules, 29 (1996) 3323-3325.
[43] T. Le, G. Moad, E. Rizzardo, S. Thang, Inventors; polymerization with living characteristics, WO, 98 (1998) 01478.
[44] R.T. Mayadunne, E. Rizzardo, J. Chiefari, J. Krstina, G. Moad, A. Postma, S.H. Thang, Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT) agents: ABA triblock copolymers by radical polymerization in two steps, Macromolecules, 33 (2000) 243-245.
[45] D.J. Keddie, C. Guerrero-Sanchez, G. Moad, E. Rizzardo, S.H. Thang, Switchable reversible addition–fragmentation chain transfer (RAFT) polymerization in aqueous solution, N, N-dimethylacrylamide, Macromolecules, 44 (2011) 6738-6745.
[46] G. Moad, E. Rizzardo, S.H. Thang, Living radical polymerization by the RAFT process, Australian journal of chemistry, 58 (2005) 379-410.
[47] G. Moad, E. Rizzardo, S.H. Thang, Living radical polymerization by the RAFT process–a third update, Australian Journal of Chemistry, 65 (2012) 985-1076.
[48] G. Moad, E. Rizzardo, S.H. Thang, Toward living radical polymerization, Accounts of chemical research, 41 (2008) 1133-1142.
[49] J. Chiefari, Y. Chong, F. Ercole, J. Krstina, J. Jeffery, T.P. Le, R.T. Mayadunne, G.F. Meijs, C.L. Moad, G. Moad, Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process, Macromolecules, 31 (1998) 5559-5562.
[50] A. Veloso, W. García, A. Agirre, N. Ballard, F. Ruipérez, C. José, J.M. Asua, Determining the effect of side reactions on product distributions in RAFT polymerization by MALDI-TOF MS, Polymer Chemistry, 6 (2015) 5437-5450.
[51] M. Samadi-Baboli, G. Favre, P. Canal, G. Soula, Low density lipoprotein for cytotoxic drug targeting: improved activity of elliptinium derivative against B16 melanoma in mice, British journal of cancer, 68 (1993) 319.
[52] R.A. Firestone, Low-density lipoprotein as a vehicle for targeting antitumor compounds to cancer cells, Bioconjugate chemistry, 5 (1994) 105-113.
[53] A. Sharma, U.S. Sharma, Liposomes in drug delivery: progress and limitations, International journal of pharmaceutics, 154 (1997) 123-140.
[54] Z. Ahmad, A. Shah, M. Siddiq, H.-B. Kraatz, Polymeric micelles as drug delivery vehicles, Rsc Advances, 4 (2014) 17028-17038.
[55] F. Cao, Y. Liu, J. Xu, Y. He, B. Hammouda, R. Qiao, B. Yang, Probing Nanoscale Thermal Transport in Surfactant Solutions, Scientific reports, 5 (2015).
[56] N.J. Turro, C. Chung, Photoluminescent probes for water soluble polymers. Pressure and temperature effects on a polyol surfactant, Macromolecules, 17 (1984) 2123-2126.
[57] S.B. La, T. Okano, K. Kataoka, Preparation and characterization of the micelle‐forming polymeric drug indomethacin‐incorporated poly (ethylene oxide)–poly (β‐benzyl L‐aspartate) block copolymer micelles, Journal of pharmaceutical sciences, 85 (1996) 85-90.
[58] B. Stewart, C.P. Wild, World cancer report 2014, World, (2016).
[59] C. De Martel, J. Ferlay, S. Franceschi, J. Vignat, F. Bray, D. Forman, M. Plummer, Global burden of cancers attributable to infections in 2008: a review and synthetic analysis, The lancet oncology, 13 (2012) 607-615.
[60] V.P. Torchilin, Targeted pharmaceutical nanocarriers for cancer therapy and imaging, The AAPS journal, 9 (2007) E128-E147.
[61] M.L. Adams, A. Lavasanifar, G.S. Kwon, Amphiphilic block copolymers for drug delivery, Journal of pharmaceutical sciences, 92 (2003) 1343-1355.
[62] M.M. Yallapu, M. Jaggi, S.C. Chauhan, Curcumin nanoformulations: a future nanomedicine for cancer, Drug Discov Today, 17 (2012) 71-80.
[63] A. Goel, S. Jhurani, B.B. Aggarwal, Multi‐targeted therapy by curcumin: how spicy is it?, Molecular nutrition & food research, 52 (2008) 1010-1030.
[64] H.H. Tønnesen, J. Karlsen, Studies on curcumin and curcuminoids, Zeitschrift für Lebensmittel-Untersuchung und Forschung, 180 (1985) 402-404.
[65] M. Yokoyama, Clinical applications of polymeric micelle carrier systems in chemotherapy and image diagnosis of solid tumors, Journal of Experimental & Clinical Medicine, 3 (2011) 151-158.
[66] Y. Chen, Z. Li, H. Wang, Y. Wang, H. Han, Q. Jin, J. Ji, IR-780 Loaded Phospholipid Mimicking Homopolymeric Micelles for Near-IR Imaging and Photothermal Therapy of Pancreatic Cancer, ACS applied materials & interfaces, 8 (2016) 6852-6858.
[67] T.S. Kale, A. Klaikherd, B. Popere, S. Thayumanavan, Supramolecular assemblies of amphiphilic homopolymers, Langmuir, 25 (2009) 9660-9670.
[68] R.R. Ramireddy, P. Prasad, A. Finne, S. Thayumanavan, Zwitterionic amphiphilic homopolymer assemblies, Polymer chemistry, 6 (2015) 6083-6087.
[69] M.P. Cashion, T.E. Long, Biomimetic design and performance of polymerizable lipids, Accounts of chemical research, 42 (2009) 1016-1025.
[70] A. Puri, R. Blumenthal, Polymeric lipid assemblies as novel theranostic tools, Accounts of chemical research, 44 (2011) 1071-1079.
[71] G. Hu, S.S. Parelkar, T. Emrick, A facile approach to hydrophilic, reverse zwitterionic, choline phosphate polymers, Polym. Chem., 6 (2015) 525-530.
[72] H.K. Cho, H.-J. Cho, S. Lone, D.-D. Kim, J.H. Yeum, I.W. Cheong, Preparation and characterization of MRI-active gadolinium nanocomposite particles for neutron capture therapy, Journal of Materials Chemistry, 21 (2011) 15486-15493.
[73] A. Domínguez, A. Fernández, N. González, E. Iglesias, L. Montenegro, Determination of critical micelle concentration of some surfactants by three techniques, J. Chem. Educ, 74 (1997) 1227.
[74] S. Farhangi, J. Duhamel, Pyrenyl Derivative with a Four-Atom Linker That Can Probe the Local Polarity of Pyrene-Labeled Macromolecules, The Journal of Physical Chemistry B, 120 (2016) 834-842.
[75] I. Astafieva, X.F. Zhong, A. Eisenberg, Critical micellization phenomena in block polyelectrolyte solutions, Macromolecules, 26 (1993) 7339-7352.
[76] K. Kalyanasundaram, J.K. Thomas, Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems, Journal of the American Chemical Society, 99 (1977) 2039-2044.
[77] L. Piñeiro, M. Novo, W. Al-Soufi, Fluorescence emission of pyrene in surfactant solutions, Advances in colloid and interface science, 215 (2015) 1-12.
[78] M. Bustamante, N. Durán, M. Diez, Biosurfactants are useful tools for the bioremediation of contaminated soil: a review, Journal of soil science and plant nutrition, 12 (2012) 667-687.
[79] L. Chen, X. Sha, X. Jiang, Y. Chen, Q. Ren, X. Fang, Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation, International journal of nanomedicine, 8 (2013) 73.
[80] R. Yang, S. Zhang, D. Kong, X. Gao, Y. Zhao, Z. Wang, Biodegradable polymer-curcumin conjugate micelles enhance the loading and delivery of low-potency curcumin, Pharm Res, 29 (2012) 3512-3525.
[81] J. Kuchlyan, D. Banik, A. Roy, N. Kundu, N. Sarkar, Vesicles Formation by Zwitterionic Micelle and Poly-l-lysine: Solvation and Rotational Relaxation Study, The Journal of Physical Chemistry B, 119 (2015) 8285-8292.
[82] M. Hamzeloo-Moghadam, N. Taiebi, M. Mosaddegh, B. Eslami Tehrani, S. Esmaeili, The effect of some cosolvents and surfactants on viability of cancerous cell lines, Research Journal of Pharmacognosy, 1 (2014) 41-45. |