博碩士論文 102331001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.116.67.217
姓名 林修白(Shiou-Bair Lin)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 非接觸式雙電感植牙穩固度檢測裝置設計製作暨驗證研究
(Design and Validation of Non-contact Dual Inductor Detection Device for Dental Implant Stability Assessment)
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 早期藉由假牙置換的方式對恆齒缺損的病患進行治療,有可能產生齒槽骨萎縮等問題,故後來逐漸發展成利用人工牙根的植牙手術。依據臨床上的經驗,普遍認為術後的骨整合程度 (植體穩固度) 為手術成功與否的關鍵。
針對長期觀測骨整合程度的議題,本研究著重於設計製作一個非侵入、非接觸式的植牙術後穩固度檢測裝置,其具有簡易電路設計、小體積、手持式等優點,且可藉由提供客觀量化的數值,以建立有效評估方式,協助臨床牙醫師即時治療,降低手術失敗的風險。
當一棒狀物鎖附於植體上時,可視為懸臂梁結構。當該懸臂梁結構的骨整合情況越好,意即剛性越強,則共振頻率上升;反之,則下降。本檢測裝置藉由將頻率範圍200至10 kHz的交流小波訊號輸入至電感中,使之產生交互變化的磁力激振結構物後,基於法拉第電磁感應定律,同樣以電感感應磁通量變化的情形產生感應電動勢,並透過頻率響應函數計算後,獲得該懸臂梁結構的共振頻率,即可判定骨整合情況之好壞。此外,另撰寫人機介面可適當調整實驗相關參數,並即時將量測過程中得到的每筆數據顯示於螢幕上,而在量測結束後會得到一個最終平均值及標準差,代表該次測量結果。
本研究在體外人造骨塊的實驗結果中顯示,無論植體與齒槽骨之間是否含有介面組織,該結構物的共振頻率,皆因植體周圍環境的剛性增加而上升;在體內白兔脛骨實驗中,編號1及2的白兔因初始穩固度較低,而導致手術失敗;編號3至5的白兔皆觀察到結構物的共振頻率值隨著時間的推移,呈現上升的趨勢,表示其骨整合情況良好。
綜合以上實驗結果,可推論初始穩固度對於植牙手術的成功與否有極大的影響。隨著時間的推移,穩固度將由植體周圍介面組織所提供。本檢測裝置亦藉由簡易電路設計達成縮小體積、手持式設計的目標,且其檢測結果可真實反應骨整合之趨勢變化。
摘要(英) Previously, the treatment for patients with permanent tooth defects was treated by denture replacement, but this way may cause the alveolar bone atrophy or other problems. Nowadays, the way to solve this kind of problem is developed into using the artificial tooth to replace the permanent tooth through dental implant operation. From the clinical experience of dental implant surgery, it is generally believed that the osseointegration (postoperative implant Stability) is the key to a successful surgery. In this study, the target is to establish an effective way to assess the dental implant stability.
This study focuses on developing an objective, quantitative, non-invasive and non-contact dental implant stability detection device that is expected to reduce the risk of surgical failure. In addition, the detection device is designed with the advantage of a simple electric circuit, small size and hand-held.
If the magnetic rod is fixed on the implant, we can consider that the structure looks like a cantilever beam. The resonance frequency (RF) of this beam increases if the material stiffness around the structure increases. When the rod is excited by the detection device, it will vibrate and influence the magnetic field around the structure, then causes the magnetic motive force (MMF). The detection device will receive the MMF and compare with the reference signal, then we can get the RF of this structure.
From in vitro/in vivo experiments, the results can prove that the RF will increase when the material stiffness around the dental implant increases. So, we suggest that the primary stability is the key to a successful surgery, and our detection device can truly reflect the trend in osseointegration.
關鍵字(中) ★ 植牙
★ 骨整合
★ 共振頻率法
★ 電磁感測器
★ 電感
關鍵字(英) ★ Implant
★ Osseointegration
★ Resonance Frequency
★ Electromagnetic Sensor
★ Inductor
論文目次 摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
圖目錄 vii
表目錄 x
一、緒論 1
1-1 研究動機與目的 1
1-2 文獻探討 2
1-2-1 術前評估/植牙手術 2
1-2-2 植牙術後骨整合 3
1-2-3 植牙術後穩固度 5
1-2-4 檢測方式 5
1-3 論文範疇 11
二、理論基礎 13
2-1 結構共振頻率量測 13
2-1-1 懸臂梁結構的共振頻率 13
2-1-2 振動量測 14
2-2 磁場理論 15
2-2-1 電感及法拉第定律 15
2-2-2 磁通量密度 16
2-2-3 磁力 16
2-3 訊號處理 17
2-3-1 莫萊小波 17
2-3-2 傅立葉轉換 19
2-3-3 頻率響應函數 19
三、檢測裝置設計與驗證 21
3-1 雙電感檢測裝置設計 22
3-1-1 電感選用準則 24
3-1-2 電感測試 26
3-1-3 檢測電路設計 29
3-1-4 人機介面 31
3-2 雙電感檢測裝置驗證 33
3-2-1 穩定性測試 34
3-2-2 檢測裝置量測使用範圍 36
3-2-3 調頻測試量測系統誤差 37
3-2-4體外人造骨塊樣本驗證裝置 38
四、體外及體內實驗規劃 44
4-1 體外人造骨塊實驗 44
4-1-1 體外人造骨塊設計 45
4-1-2 實驗規劃 46
4-1-3 實驗環境參數驗證 47
4-2 體內白兔脛骨實驗 50
4-2-1 實驗規劃 51
五、結果與討論 54
5-1 體外人造骨塊實驗結果與討論 54
5-1-1 體外人造骨塊實驗結果 54
5-1-2 體外人造骨塊現象討論 58
5-2體內白兔脛骨實驗結果與討論 59
5-2-1體內白兔脛骨實驗結果 59
5-2-2 體內白兔脛骨現象討論 65
六、結論與未來展望 66
6-1結論 66
6-1-1檢測系統部分 66
6-1-2實驗結果部分 66
6-1-3檢測效果部分 67
6-2未來展望 67
參考文獻 68
參考文獻 Adell, R., Lekholm, U., Branemark P. I. (1985). Surgical Procedures. Tissue-integrated Prostheses: Osseointegration in Clinical Dentistry. Chicago: Quintessence Pub Co, 199.
Albrektsson, T. (1985). Dental Implants: A Review of Clinical Approaches. Australian Prosthodontic Society Bulletin, 15, 7-25.
Atsumi, M., Park, S. H., & Wang, H. L. (2007). Methods Used to Assess Implant Stability: Current Status. International Journal of Oral & Maxillofacial Implants, 22(5), 743-754.
Berglundh, T., Abrahamsson, I., Lang, N. P., & Lindhe, J. (2003). De Novo Alveolar Bone Formation Adjacent to Endosseous Implants. Clinical Oral Implants Research, 14(3), 251-262.
Bogaerde, L., Rangert, B., & Wendelhag, I. (2005). Immediate/Early Function of Branemark SystemR TiUnite? Implants in Fresh Extraction Sockets in Maxillae and Posterior Mandibles: An 18?Month Prospective Clinical Study. Clinical Implant Dentistry and Related Research, 7(s1), s121-s130.
Branemark, P. I., Breine, U., Adell, R., Hansson, B. O., Lindstrom, J., & Ohlsson, A. (1969). Intra-osseous Anchorage of Dental Prostheses: I. Experimental Studies. Scandinavian Journal of Plastic and Reconstructive Surgery, 3(2), 81-100.
Branemark, P. I., Zarb, G. A., Albrektsson, T., & Rosen, H. M. (1986). Tissue-Integrated Prostheses. Osseointegration in Clinical Dentistry. Chicago: Quintessence Pub Co, 496-497.
Brunski, J. B. (1988). Biomaterials and Biomechanics in Dental Implant Design. International Journal of Oral & Maxillofacial Implants, 3(2), 85-97.
Brunski, J. B. (1992). Biomechanical Factors Affecting the Bone-dental Implant Interface. Clinical Materials, 10(3), 153-201.
Brunski, J. B. (1999). In vivo Bone Response to Biomechanical Loading at the Bone-dental Implant Interface. Advances in Dental Research, 13(1), 99-119.
Bryant, S. R. (1998). The Effects of Age, Jaw Site, and Bone Condition on Oral Implant Outcomes. International Journal of Prosthodontics, 11(5), 470-490.
Cawley, P., & Pettersson, A. (2013). U.S. Patent No. 8,391,958. Washington, DC: U.S. Patent and Trademark Office.
Chang, W. J., Lee, S. Y., Wu, C. C., Lin, C. T., Abiko, Y., Yamamichi, N., & Huang, H. M. (2007). A Newly Designed Resonance Frequency Analysis Device for Dental Implant Stability Detection. Dental Materials Journal, 26(5), 665-671.
Chang, P. C., Lang, N. P., & Giannobile, W. V. (2010). Evaluation of Functional Dynamics during Osseointegration and Regeneration Associated with Oral Implants. Clinical Oral Implants Research, 21(1), 1-12.
Cheng, D. K. (2007) :電磁學-第二版 (李永勳,譯) 。台北市:偉明。
Chia, T. S., Chen, C. S., & Pan, M. C. (2014). Assessment of Dental Implantation Osseointegration through Electromagnetic Actuation and Detection. Journal of Medical Devices, 8(3), 030940.
Derhami, K., Wolfaardt, J. F., Faulkner, G., & Grace, M. (1995). Assessment of the Periotest Device in Baseline Mobility Measurements of Craniofacial Implants. International Journal of Oral & Maxillofacial Implants, 10(2), 101-125.
Driskell, T. D. (1987). History of Implants. Journal of California Dental Association, 15(10), 16-25.
Duddeck, D., & Faber, F. (2015). Effects of Multiple Reuse, Remounting and Consecutive Autoclave Sterilization on Osstell SmartPegs. Clinical Oral Implants Research, 26(s12), 79.
Ericsson, I., Johansson, C. B., Bystedt, H., & Norton, M. R. (1994). A Histomorphometric Evaluation of Bone?to?Implant Contact on Machine?prepared Roughened Titanium and Dental Implants. A Pilot Study in the Dog. Clinical Oral Implants Research, 5(4), 202-206.
Friberg, B., Sennerby, L., Linden, B., Grondahl, K., & Lekholm, U. (1999). Stability Measurements of One-stage Branemark Implants during Healing in Mandibles: A Clinical Resonance Frequency Analysis Study. International Journal of Oral and Maxillofacial Surgery, 28(4), 266-272.
Gapski, R., Wang, H. L., Mascarenhas, P., & Lang, N. P. (2003). Critical Review of Immediate Implant Loading. Clinical Oral Implants Research, 14(5), 515-527.
Hayashi, M., Kobayashi, C., Ogata, H., Yamaoka, M., & Ogiso, B. (2010). A No?contact Vibration Device for Measuring Implant Stability. Clinical Oral Implants Research, 21(9), 931-936.
Hammerle, C. H. F., Schmid, J., Olah, A. J., & Lang, N. P. (1996). Influence of Initial Implant Mobility on the Integration of Titanium Implants. An Experimental Study in Rabbits. Clinical Oral Implants Research, 7(2), 120-127.
Herrero-Climent, M., Albertini, M., Rios-Santos, J. V., Lazaro-Calvo, P., Fernandez-Palacin, A., & Bullon, P. (2012). Resonance Frequency Analysis-reliability in Third Generation Instruments: Osstell MentorR. Medicina Oral, Patologia Oral Cirugia Bucal , 17(5), e801-e806.
Herrero-Climent, M., Santos-Garcia, R., Jaramillo-Santos, R., Romero-Ruiz, M. M., Fernandez-Palacin, A., Lazaro-Calvo, P., & Rios-Santos, J. V. (2013). Assessment of Osstell ISQ’s Reliability for Implant Stability Measurement: A Cross-sectional Clinical Study. Medicina Oral, Patologia Oral Cirugia Bucal , 18(6), e877-e882.
Huang, H. M., Cheng, K. Y., Lin, C. T., Huang, W. J., Yao, W. C., Cheng, P. Y., & Lee, S. Y. (2004). Examination of a Novel Designed Device Used for Dental Implants Stability Detection-An Animal Study. Journal of Medical and Biological Engineering, 24(3), 155-161.
Ito, Y., Sato, D., Yoneda, S., Ito, D., Kondo, H., & Kasugai, S. (2008). Relevance of Resonance Frequency Analysis to Evaluate Dental Implant Stability: Simulation and Histomorphometric Animal Experiments. Clinical Oral Implants Research, 19(1), 9-14.
Ivanoff, C. J., Sennerby, L., & Lekholm, U. (1996). Influence of Mono-and Bicortical Anchorage on the Integration of Titanium Implants: A Study in the Rabbit Tibia. International Journal of Oral and Maxillofacial Surgery, 25(3), 229-235.
Iwama, R., Tanaka, K., Matsui, A., Kataoka, Y., Yamauchi, K., & Takahashi, T. (2015). Clinical Evaluation of Dental Implant Stability at the Time of Surgery and Secondary Stability after Healing Term by Using Resonance Frequency Analysis. Clinical Oral Implants Research, 26(12), 162.
Jacobs, R. (2003). Preoperative Radiologic Planning of Implant Surgery in Compromised Patients. Periodontology 2000, 33(1), 12-25.
Johansson, C., & Albrektsson, T. (1987). Integration of Screw Implants in the Rabbit: A 1-yr Follow-up of Removal Torque of Titanium Implants. International Journal of Oral & Maxillofacial Implants, 2(2), 74-88.
Lee, S. Y., Huang, H. M., Lin, C. Y., & Shih, Y. H. (2000). In vivo and In vitro Natural Frequency Analysis of Periodontal Conditions: An Innovative Method. Journal of Periodontology Research, 71(4), 632-640.
Lee, H. J., Yeo, I. S., & Kwon, T. K. (2013). Removal Torque Analysis of Chemically Modified Hydrophilic and Anodically Oxidized Titanium Implants with Constant Angular Velocity for Early Bone Response in Rabbit Tibia. Tissue Engineering and Regenerative Medicine, 10(5), 252-259.
Lin, J., & Qu, L. (2000). Feature Extraction Based on Morlet Wavelet and its Application for Mechanical Fault Diagnosis. Journal of Sound and Vibration, 234(1), 135-148.
Mallat, S. (2008). A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press.
Martinez, H., Davarpanah, M., Missika, P., Celletti, R., & Lazzara, R. (2001). Optimal Implant Stabilization in Low Density Bone. Clinical Oral Implants Research, 12(5), 423-432.
Meredith, N. (1998). A Review of Nondestructive Test Methods and their Application to Measure the Stability and Osseointegration of Bone Anchored Endosseous Implants. Critical Reviews? in Biomedical Engineering, 26(4), 275-291.
Meredith, N. (1998). Assessment of Implant Stability as a Prognostic Determinant. International Journal of Prosthodontics, 11(5), 491-501.
Meredith, N., Alleyne, D., & Cawley, P. (1996). Quantitative Determination of the Stability of the Implant?tissue Interface Using Resonance Frequency Analysis. Clinical Oral Implants Research, 7(3), 261-267.
Meredith, N., Shagaldi, F., Alleyne, D., Sennerby, L., & Cawley, P. (1997). The Application of Resonance Frequency Measurements to Study the Stability of Titanium Implants during Healing in the Rabbit Tibia. Clinical Oral Implants Research, 8(3), 234-243.
Michael, G. N. (2015). Carranza’s Clinical Periodontology (12th Ed.). Elsevier Health Sciences.
Mistry, G., Shetty, O., Shetty, S., & Singh, R. D. (2014). Measuring Implant Stability: A Review of Different Methods. Journal of Dental Implants, 4(2), 165-169.
Miyamoto, I., Tsuboi, Y., Wada, E., Suwa, H., & Iizuka, T. (2005). Influence of Cortical Bone Thickness and Implant Length on Implant Stability at the Time of Surgery—Clinical, Prospective, Biomechanical, and Imaging Study. Bone, 37(6), 776-780.
Mou, R. Z., Lin, S. B., Chen, C. S., & Pan, M. C. (2015). Detection Device for Dental Implant Osseointegration Using Inductors and Hall Sensors. Journal of Medical Devices, 9(2), 020937.
Nedir, R., Bischof, M., Szmukler?Moncler, S., Bernard, J. P., & Samson, J. (2004). Predicting Osseointegration by Means of Implant Primary Stability. Clinical Oral Implants Research, 15(5), 520-528.
Oka, H., Yamamoto, T., Saratani, K., & Kawazoe, T. (1989). Application of Mechanical Mobility of Periodontal Tissues to Tooth Mobility Examination. Medical and Biological Engineering and Computing, 27(1), 75-81.
OsstellR 官方技術說明網頁,http://www.osstell.com/clinical-guidelines/the-technique-behind-osstell/。
Rateritschak, K. H. (1989). Periodontology: Color Atlas of Dental Medicine, New York, Thieme Med Pub Co, 43-72.
Recum, A. F. V., Shannon, C. E., Cannon, C. E., Long, K. J., Kooten, T. G. V., & Meyle, J. (1996). Surface Roughness, Porosity, and Texture as Modifiers of Cellular Adhesion. Tissue Engineering, 2(4), 241-253.
Ring, M. E. (1995). A Thousand Years of Dental Implants: A Definitive History—Part 1. Compendium of Continuing Education in Dentistry (Jamesburg, NJ: 1995), 16(10), 1060-1062.
Schulte, W., D′Hoedt, B., Lukas, D., Maunz, M., & Steppeler, M. (1992). Periotest for Measuring Periodontal Characteristics–correlation with Periodontal Bone Loss. Journal of Periodontal Research, 27(3), 184-190.
Schulte, W., D′Hoedt, B., Lukas, D., Muhlbradt, L., Scholz, F., Bretschi, J., Frey, D., Gudat, H., Konig, M., Markl, M. (1983). Periotest— A New Measurement Process for Periodontal Function. Zahnarztliche Mitteilungen, 73(11), 1229-1240.
Sennerby, L., & Roos, J. (1998). Surgical Determinants of Clinical Success of Osseointegrated Oral Implants: A Review of the Literature. International Journal of Prosthodontics, 11(5), 408-420.
Sullivan, D. Y., Sherwood, R. L., Collins, T. A., & Krogh, P. H. (1996). The Reverse-torque Test: A Clinical Report. International Journal of Oral & Maxillofacial Implants, 11(2), 179-185.
Sunden, S., Grondahl, K., & Grondahl, H. G. (1995). Accuracy and Precision in the Radiographic Diagnosis of Clinical Instability in Branemark Dental Implants. Clinical Oral Implants Research, 6(4), 220-226.
Szmukler-Moncler, S., Salama, H., Reingewirtz, Y., & Dubruille, J. H. (1998). Timing of Loading and Effect of Micro-motion on Bone-dental Implant Interface: Review of Experimental Literature. Journal of Biomedical Materials Research, 43(2), 192-203.
Thomson, W. (1996). Theory of Vibration with Applications. CRC Press.
Vayron, R., Soffer, E., Anagnostou, F., & Haiat, G. (2014). Ultrasonic Evaluation of Dental Implant Osseointegration. Journal of Biomechanics, 47(14), 3562-3568.
Yamane, M., Yamaoka, M., Hayashi, M., Furutoyo, I., Komori, N., & Ogiso, B. (2008). Measuring Tooth Mobility with a No?contact Vibration Device. Journal of Periodontal Research, 43(1), 84-89.
Zarb, G. A., & Albrektsson, T. (1985). Tissue-integrated Prostheses: Osseointegration in Clinical Dentistry. Chicago: Quintessence Pub Co.
Zhuang, H. B., Tu, W. S., Pan, M. C., Wu, J. W., Chen, C. S., Lee, S. Y., & Yang, Y. C. (2013). Noncontact Vibro-acoustic Detection Technique for Dental Osseointegration Examination. Journal of Medical and Biological Engineering, 33(1), 35-44.
潘敏俊 (2016):植牙骨整合穩固度檢測儀開發研究。105年度南部生技醫療器材產業聚落發展計畫期中報告,科技部南部科學工業園區管理局,30-31。
牟汝振 (2015):電磁式植牙骨整合穩固度檢測技術研究與裝置開發.。中央大學機械工程學系學位論文,1-86。
台灣牙醫網 (2009):哪些人不適合植牙。http://tw-dentist.com/front/bin/home.phtml。
黃豪銘、張維仁、吳成哲、楊建中、李勝揚 (2009):利用共振頻率量測植牙穩固度-植牙的新守護神。臨床牙醫植體學精要,臺灣牙醫植體學會。
何政昇 (2005):植體失敗的肇因:文獻回顧與失敗病例的探討 (Ⅱ) 植體失敗與相關病因的探討。中華民國牙周病醫學會雜誌,10(4),309-329。
謝大誠 (2013):一體式植牙穩固度檢測裝置之設計製作及驗證.。中央大學機械工程學系學位論文,1-60。
許詠庭、王鴻烈 (2013):理想的植體位置: 全方面的思考與決策。臺灣牙周病醫學會雜誌,18(2),127-135。
周郁翔 (2014):植牙前需要什麼樣的評估?。高醫醫訊月刊,20(5),18。
陳璟鋒 (2003):利用共振頻率初始值預測牙科植體之癒合時間及可能穩定值: 以動物實驗及離體實驗。臺北醫學大學牙醫學系碩博士班學位論文,1-188。
蔡育廷 (2007):非接觸式生物組織電導率成像系統.。中央大學電機工程學系學位論文, 1-88。
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2017-4-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明