國立中央大學 106 學年度碩士班考試入學試題

所別: 機械工程學系 碩士班 製造與材料組(一般生) 共【頁 第一頁

機械工程學系光機電工程 碩士班 光機組(一般生)

能源工程研究所 碩士班 不分組(一般生)

科目: 工程數學

本科考試可使用計算器,廠牌、功能不拘 須有計算過程

*請在答案卷

內作答

1. Solutions for ordinary differential equations (ODEs) (25%)

(a) Find the solution for the ODE $e^{3\theta}(dr + 3rd\theta) = 0$

(5%)

(b) Find the solution for the ODE $y'' + 16y = 4\sin t$, y(0) = 0, y'(0) = 1

(10%)

(c) Find a basis of solutions by the Frobenius method of the following ODE: $x^2v'' + x(2x-1)v' + (x+1)v = 0$. (10%)

2. Series solution and Linear algebra (25%)

- (a) For a general **Legendre** equation $(1-x^2)y''-2xy'+n(n+1)y=0$ Please derive the recursion relation. (7%) and use power series method to solve it as n=1. (8%)
- (b) Please use Cramer's rule to evaluate A_n and B_n of the following equations (10%)

$$\begin{cases} (25 - n^2)A_n + 0.05nB_n = \frac{4}{n^2 \pi} \\ -0.05nA_n + (25 - n^2)B_n = 0 \end{cases}$$

3. Laplace transform / Fourier analysis (25%)

(1) Fourier series expansion of a periodic function (or signal) f(t) can be represented as

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nw_0 t + \sum_{n=1}^{\infty} b_n \sin nw_0 t,$$

where $a_0 = \frac{2}{T} \int_T f(t) dt$, $a_n = \frac{2}{T} \int_T f(t) \cos n\omega_0 t dt$, and $b_n = \frac{2}{T} \int_T f(t) \sin n\omega_0 t dt$.

- (i) (6%) Give the physical meaning of $\frac{a_0}{2}$ and ω_0 .
- (ii) (8%) If now $g_1(t)$ is an even function, please address and rewrite its Fourier series expansion; likewise, if $g_2(t)$ is an odd function, what does the form of its Fourier series expansion become?
- (2) If a measured temperature can be characterized as a square wave of amplitude 20 $^{\circ}$ C and period T = 6 sec,
 - (i) (3%) please first sketch the time waveform of measured temperature stated as the above in the form of an even function or an odd function (Time in second: $-\infty \leftrightarrow \infty$);
 - (ii) (8%) then, derive its Fourier series expansion (till the first six terms).
- 4. Partial differential equations (PDEs) (25%)

$$y_{\text{ct}} = a^2 y_{xx}$$

B.C.: $y(0,t) = 0$, $y(2,t) = 0$

$$y_{rr} = a^2 y_{rr} + g(x)$$

B.C.:
$$y(0,t) = 0$$
, $y(2,t) = 0$

B.C.:
$$y(0,t) = u1, y(L,t) = u2$$

I.C.:
$$y(x,0)=f(x), y_t(x,0)=0$$

I.C.:
$$y(x,0)=\varphi(x), y_t(x,0) = \psi(x)$$

Solve
$$y(x,t)$$

(Hint: you can set y(x,t) = V(x,t)+u(x), or use other methods)

Solve y(x,t)