參考文獻 |
行政院原子能委員會:http://www.aec.gov.tw/。
台灣電力公司:http://www.taipower.com.tw/。
行政院公共工程委員會施工鋼要規範:http://pcces.pcc.gov.tw。
王茂齡,輸送現象,高立圖書有限公司,台北(1987)。
行政院原子能委員會,低放射性廢棄物(低階核廢料)最終處置的安全管理(2014)。
卓世偉,「加速氯離子移動試驗探討氯離子於水泥基複合材料中之傳輸行為」,博士論文,國立臺灣海洋大學材料工程研究所,基隆 (2002)。
黃然,「不同養護條件下添加飛灰或爐灰對水泥質材料性質影響之研究」,博士論文,國立台灣海洋大學,基隆(2005)。
李金輝,「黃氏富勒緻密配比設計法應用於活性粉混凝土性質之研究」,碩士論文,國立台灣科技大學,台北(2006)。
王心荻,「試體參數對混凝土電阻值影響之研究」,碩士論文,國立台灣海洋大學,基隆(2009)。
羅欣蕙,「低放射性廢棄物障壁混凝土受氯離子入侵之劣化及預估研究」,碩士論文,國立中央大學土木工程研究所,桃園(2011)。
陳昱安,「低放處置場工程障壁受氯離子侵蝕服務年限預估研究」,碩士論文,國立中央大學土木工程研究所,桃園(2012)。
牟妍樺,「低放處置場混凝土工程障壁受氯離子侵襲之服務年限信賴度研究」,碩士論文,國立中央大學土木工程研究所,桃園(2013)。
莊美玲,「活性粉混凝土應用於低放射性廢棄物最終處置場工程障壁材料之耐久性評估」,博士論文,國立中央大學土木工程研究所,桃園(2014)。
彭琦茵,「障壁混凝土受氯離子入侵剖面及使用年限推估之方法比較」,碩士論文,國立中央大學土木工程研究所,桃園(2015)。
陳品臻,「低放處置場混凝土障壁受氯離子入侵之使用年限推估」,碩士論文,國立中央大學土木工程研究所,桃園(2015)。
吳桂卿,「不同養護溫度條件對提升障壁混凝土品質之成效」,碩士論文,國立中央大學土木工程研究所,桃園(2016)。
AASHTO T259-02 Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration.
AASHTO T260-97 Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials.
Ann, K.Y., Ahn, J. H., and Ryou, J. S. (2009), “The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures.” Construction and Building Materials, Vol. 23, pp. 239- 245.
ASTM C1556-11 Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion.
ASTM C1152-12 Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete1.
ASTM C642-13 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete.
Chalee, W., Jaturapitakkul, C. and Chindaprasirt, P. (2009), “Predicting the chloride penetration of fly ash concrete in seawater.” Marine Structures, Vol. 22, No.1, pp. 341-353.
Cheyrezy, M., Maret, V., Frouin, L.(1995), “Microstructural analysis of RPC (Reactive Powder Concrete).” Cement and Concrete Research, Vol. 25, No.7, pp. 1491-1500.
DataFit (URL):http://www.curvefitting.com/.
Gettu, R.(2005), “Study of the distribution :and orientation of fibers in SFRC specimens ”, Materials and Structures, Vol. 38, pp. 31-37.
Gleize, P.J.P. (2003),“Microstructural investigation of a silica fume–cement–lime mortar.” Cement and Concrete Composites, Vol. 25, No. 2, pp. 171-175.
Gowers, K.R. and Millard, S. G.(1999),” Measurement of Concrete Resistivity for Assessment of Corrosion Severity of Steel Using Wenner Technique.” ACI Materials Journal, No. 96-M66.
Hanson, J.(1963), Optimum steam curing procedure in precasting plants, ACI J Proc, Vol. 60, pp. 75-100.
Kang, S.T., Lee, B.Y., Kim, J.K., Kim, Y.Y.(2011), “The effect of fibre distribution characteristics on the flexural strength of steel fibre-reinforced ultra high strength concrete.” Construction and Building Materials, pp. 2450-2457.
Klieger, P.(1958), “Effect of Mixing and Curing Temperature on Concrete Strength.” ACI Journal, Proceedings Vol.54, No.12, pp. 1063-1081.
Lee, N. P. and Chisholm, D. H. (2005), Reactive Powder Concrete., Building Research Levy, Australia.
Life-365 (URL):http://www.life-365.org/.
“Life_-365 Service Life Prediction Model and Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed to Chlorides” (2013).
Mangat, P.S., and Molloy, B.T. (1994), “Prediction of long term chloride concentration in concrete.” Material and structures, Vol. 27, pp. 338-346.
Mehta, P. K. (1986), Concrete Structure Properties and Materials., Prentice Hall, Inc., Englewood Cliffs, New Jersey, U.S.A..
Morris, W., Moreno, E.I. and SagiiCs, A.A.(1996), “Practical evaluation of resistivity of concrete in test cylinders using a wenner array probe.” Cement and Concrete Research, Vol. 26, No. 12, pp. 1779-1787,
Nokken, M., Boddy, A., Hooton, R.D. and Thomas, M.D.A. (2006), “Time dependent diffusion in concrete−three laboratory studies.” Cement and Concrete Research, Vol. 36, No. 1, pp. 200-207.
Papadakis, V.G. (2000), “Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress.” Cement and concrete research, Vol. 30, No. 2, pp. 291-299.
Polder, R.B. (2001), “Test methods for on site measurement of resistivity of concrete a RILEM TC-154 technical recommendation.” Construction and Building Materials, pp. 125-131.
Sellevold, E.J. (1974), “Mercury porosimetry of hardened cement paste cured or stored at 97°C”, Construction and Building Materials, Vol. 4, pp.399-404.
Sherman, R.M., David, M.B. and Pfeifer, D.W. (1996), “Durability aspects of precast prestressed Concrete-Part 1 and 2.” Journal of PCI, Vol. 41, No. 4, pp. 60-64.
Shideler, J., Chamberlin, W.H.(1942), Early strength of concrete as affected by steam curing temperatures, ACI J Proc Vol. 46, pp. 273-283.
Song, H.W., Lee, C.H. and Ann, K.Y. (2008), “Factors influencing chloride transport in concrete structures exposed to marine environments,” Cement and Concrete Composites, Vol. 30, pp. 113-121.
Stanish, K. and Thomas, M. (2003), “The use of bulk diffusion tests to establish time-dependent concrete chloride diffusion coefficients.” Cement and Concrete Research, Vol. 33, pp. 55-62.
Young, J.F., Mindess, S. and Darwin, D. (2002), Concrete, Prentice Hall, Inc., Upper Saddle River, New Jersey, U.S.A..
Zanni, H., Cheyrezy, M., Maret, V., Philippot, S. and Nieto, P. (1996), “Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using “Si NMR”.” Cement and Concrete Research , Vol. 26, pp. 93-100.
Zibara, H.R., Pérezfki, B., Hooton, D.M. and Thomas, D.A. (2000), “A study of the effect of chloride binding on service life predictions.” Cement and Concrete Research, Vol. 30, pp. 1215-1223. |