參考文獻 |
1. J. K. Kim, T. Gessmann, E. F. Schubert, J.-Q. Xi, H. Luo, J. Cho, et al., "GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer," Applied Physics Letters, Vol. 88, p. 013501, 2006.
2. A. Braun, B. Hirsch, E. A. Katz, J. M. Gordon, W. Guter, and A. W. Bett, "Localized irradiation effects on tunnel diode transitions in multi-junction concentrator solar cells," Solar Energy Materials and Solar Cells, Vol. 93, pp. 1692-1695, 2009.
3. M. Yamaguchi, "III–V compound multi-junction solar cells: present and future," Solar Energy Materials and Solar Cells, Vol. 75, pp. 261-269, 2003.
4. B.-Y. Oh, M.-C. Jeong, T.-H. Moon, W. Lee, J.-M. Myoung, J.-Y. Hwang, et al., "Transparent conductive Al-doped ZnO films for liquid crystal displays," Journal of Applied Physics, Vol. 99, p. 124505, 2006.
5. Y. Leterrier, L. Médico, F. Demarco, J. A. E. Månson, U. Betz, M. F. Escolà, et al., "Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays," Thin Solid Films, Vol. 460, pp. 156-166, 2004.
6. H. Aswin, K. Taweewat, Y. Ihsanul Afdi, M. Shinsuke, and K. Makoto, "ZnO Films with Very High Haze Value for Use as Front Transparent Conductive Oxide Films in Thin-Film Silicon Solar Cells," Applied Physics Express, Vol.3, p. 051102, 2010.
7. P. Tiwana, P. Docampo, M. B. Johnston, H. J. Snaith,; L. M. Herz, "Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells," Acs Nano, Vol.5, p.5158-5166, 2011.
8. J. Zhao, X. J. Zhao, J. M. Ni, H. Z. Tao, "Structural, Electrical and Optical Properties of P-Type Transparent Conducting SnO2:Al Film Derived from Thermal Diffusion of Al/SnO2/Al Multilayer Thin Films." Acta Materialia, Vol.58, p.6243-6248, 2010.
9. S. S. Pan, G. H. Li, L. B. Wang, Y. D. Shen, Y. Wang, T. Mei, et al., "Atomic Nitrogen Doping and P-Type Conduction in SnO2," Applied Physics Letters, Vol.95, p.222112, 2009.
10. Soumen Das, V. Jayaraman, "SnO2: A Comprehensive Review on Structures and Gas Sensors," Progress in Materials Science, Vol.66, p.112-255, 2014.
11. Y. Huang, G. Li, J. Feng, Q. Zhang, "Investigation on Structural, Electrical and Optical Properties of Tungsten-Doped Tin Oxide Thin Films," Thin Solid Films, Vol.518, p.1892-1896, 2010.
12. A. R. Babar, S. S. Shinde, A. V. Moholkar, C. H. Bhosale, J. H. Kim, K. Y. Rajpure, "Physical Properties of Sprayed Antimony Doped Tin Oxide Thin Films: The Role of Thickness," Journal of Semiconductors, Vol.32, p.053001, 2011.
13. A. Benhaoua, A. Rahal, B. Benhaoua, M. Jlassi, "Effect of Fluorine Doping on the Structural, Optical and Electrical Properties of Sno2 Thin Films Prepared by Spray Ultrasonic," Superlattices and Microstructures, Vol.70, p.61-69, 2014.
14. E. Elangovan, K. Ramamurthi, "A Study on Low Cost-High Conducting Fluorine and Antimony-Doped Tin Oxide Thin Films," Applied Surface Science, Vol.249, p.183-196, 2005.
15. E. Elangovan, S. A. Shivashankar, K. Ramamurthi, "Studies on Structural and Electrical Properties of Sprayed Sno2:Sb Films," Journal of Crystal Growth, Vol.276, p.215-221, 2005.
16. K. Narasimha Rao, K. S. Shamala, L. C. S. Murthy, "Effect of Antimony and Fluorine Doping on Electrical, Optical and Structural Properties of Tin Oxide Films Prepared by Spray Pyrolysis Method," Surface Review and Letters, Vol.13, p.357-364, 2006.
17. A. Rahal, S. Benramache, B. Benhaoua, "The Effect of the Film Thickness and Doping Content of Sno2:F Thin Films Prepared by the Ultrasonic Spray Method, " Journal of Semiconductors, Vol.34, p.093003, 2013.
18. G. Rey, C. Ternon, M. Modreanu, X. Mescot, V. Consonni, D. Bellet, "Electron Scattering Mechanisms in Fluorine-Doped Sno2 Thin Films, " Journal of Applied Physics, Vol.114, p.183713, 2013.
19. T. Tsuchiya, T. Nakajima, K. Shinoda, "Electrical Properties of Sb-Doped Epitaxial Sno2 Thin Films Prepared Using Excimer-Laser-Assisted Metal–Organic Deposition, " Applied Physics B, Vol.113, p.333-338, 2013.
20. H. Liu, J. Wan, Q. Fu, M. Li, W. Luo, Z. Zheng, et al., "Tin oxide films for nitrogen dioxide gas detection at low temperatures," Sensors and Actuators B, Vol.177, p. 460-466, 2013.
21. V. Bonu, A. Das, A. K. Prasad, N. G. Krishna, S. Dhara, A.K. Tyagi, "Influence of in-plane and bridging oxygen vacancies of SnO2 nanostructures on CH4 sensing at low operating temperatures," Applied Physics Letters, Vol.105, p.243102, 2014.
22. A. Katoch, S. W. Choi, H. W. Kim, S. S. Kim, "Highly sensitive and selective H2 sensing by ZnO nanofibers and the underlying sensing mechanism," Journal of Hazardous Materials, Vol.286, p. 229-235, 2015.
23. A. Gurlo, "Interplay between O2 and SnO2: Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen," ChemPhysChem, Vol.7, p.2041-2052, 2006.
24. M. Batzill, U. Diebold, "The surface and materials science of tin oxide," Progress in Surface Science, Vol.79, p.45-154, 2005.
25. M. Epifani, J. D. Prades, E. Comini, E. Pellicer, M. Avella, P. Siciliano, et al., "The Role of Surface Oxygen Vacancies in the NO2 Sensing Properties of SnO2 Nanocrystals," Journal of Physical Chemistry C, Vol.112, p.19540-19546, 2008.
26. Y. F. Sun, S. B. Liu, F. L. Meng, J. Y. Liu, Z. Jin, L. T. Kong, et. al., "Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review," Sensors, Vol.12, p.2610-2631, 2012.
27. N. Barsan, U. Weimar, "Conduction Model of Metal Oxide Gas Sensors," Journal of Electroceramics, Vol.7, p.143-167, 2001.
28. N. Barsan, D. Koziej, U. Weimar, "Metal oxide-based gas sensor research: How to?" Sensors and Actuators B, Vol.121, p.18-35, 2007.
29. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, "Metal Oxide Gas Sensors: Sensitivity and Influencing Factors," Sensors, Vol.10, p.2088-2106, 2010.
30. S. Wu, S. Yuan, L. Shi, Y. Zhao, J. Fang, "Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals," Journal of Colloid and Interface Science, Vol.346, p.12-16, 2010.
31. J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, et. al., "Oxygen Vacancy Induced Band-Gap Narrowing and Enhanced Visible Light Photocatalytic Activity of ZnO," ACS Applied Materials & Interfaces, Vol.4, p.4024-4030, 2012.
32. Y. B. Lin, Y. M. Yang, B. Zhuang, S. L. Huang, L. P. Wu, Z. G. Huang, et. al., "Ferromagnetism of Co-doped TiO2 films prepared by plasma enhanced chemical vapour deposition (PECVD) method," Journal of Physics D, Vol.41, p.195007, 2008.
33. E. R. Viana, J. C. González, G. M. Ribeiro, A. G. de Oliveira, "Photoluminescence and High-Temperature Persistent Photoconductivity Experiments in SnO2 Nanobelts," Journal of Physical Chemistry C, Vol.117, p.7844-7849, 2013.
34. Y. Lin, D. Wang, Q. Zhao, Z. Li, Y. Ma, M. Yang, "Influence of adsorbed oxygen on the surface photovoltage and photoluminescence of ZnO nanorods," Nanotechnology, Vol.17, p.2110-2115, 2006.
35. R. A. Bardosa, T. Trupke, M. C. Schubert, T. Roth, "Trapping artifacts in quasi-steady-state photoluminescence and photoconductance lifetime measurements on silicon wafers," Applied Physics Letters, Vol.88, p.053504, 2006.
36. B. Li, D. Shaughnessy, A. Mandelis, "Measurement accuracy analysis of photocarrier radiometric determination of electronic transport parameters of silicon wafers," Journal of Applied Physics, Vol.97, p.023701, 2005.
37. P. D. Persans, N. E. Berry, D. Recht, D. Hutchinson, H. Peterson, J. Clark, et. al., "Photocarrier lifetime and transport in silicon supersaturated with sulfur," Applied Physics Letters, Vol.101, p.111105, 2012.
38. A. Kar, S. Kundu, A. Patra, "Surface Defect-Related Luminescence Properties of SnO2 Nanorods and Nanoparticles," Journal of Physical Chemistry C, Vol.115, p.118-124, 2011.
39. S. S. Pan, S. Wang, Y. X. Zhang, Y. Y. Luo, F. Y. Kong, S. C. Xu, J. M. Xu, G. H. Li, "P-Type Conduction in Nitrogen-Doped SnO2 Films Grown by Thermal Processing of Tin Nitride Films," Applied Physics A, Vol. 109, p.267-271, 2012.
40. J. Wang, D. N. Tafen, J. P. Lewis, Z. L. Hong, A. Manivannan, M. J. Zhi, M. Li, N. Q. Wu, "Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts," Journal of the American Chemical Society, Vol. 131, p.12290–12297, 2009.
41. Y. Wu, H. Liu, J. Zhang, F. Chen, "Enhanced Photocatalytic Activity of Nitrogen-Doped Titania by Deposited with Gold," The Journal of Physical Chemistry C, Vol.113, p.14689–14695, 2009.
42. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, "Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides," Science, Vol.293, p.269-271, 2001.
43. C. L. Perkins, S.-H. Lee, X. Li, S. E. Asher, T. J. Coutts, "Identification of Nitrogen Chemical States in N-Doped ZnO Via X-Ray Photoelectron Spectroscopy," Journal of Applied Physics, Vol.97, p.034907, 2005.
44. B. Ullrich, X. Haowen, "Photocurrent Theory Based on Coordinate Dependent Lifetime," Optics letters, Vol.35, p.3910-3912, 2010.
45. B. Ullrich, X. Haowen, "Photocurrent Limit in Nanowires," Optics letters, Vol.38, p.4698-4700, 2013.
46. K. Wijeratne, J. Akilavasan, M. Thelakkat, J. Bandara, "Enhancing the Solar Cell Efficiency Through Pristine 1-dimentional SnO2 Nanostructures: Comparison of Charge Transport and Carrier Lifetime of SnO2 Particles vs. Nanorods," Electrochimica Acta, Vol.72, p.192-198, 2012.
47. U. V. Desai, C. Xu, J. Wu, D. Gao, "Hybrid TiO2–SnO2 Nanotube Arrays for Dye-Sensitized Solar Cells," The Journal of Physical Chemistry C, Vol.117, p.3232-3239, 2013.
48. N. Barsan, M. Hübner, U. Weimar, "Conduction Mechanisms in SnO2 Based Polycrystalline Thick Film Gas Sensors Exposed to CO and H2 in Different Oxygen Backgrounds." Sensors and Actuators B: Chemical Vol.157, p.510-517, 2011.
49. E. Comini, F. Guido, S. Giorgio, eds. Solid State Gas Sensing. Vol.20, Springer Science & Business Media, 2008.
50. W. Mönch, Semiconductor Surfaces and Interfaces. Vol.26, Springer Science & Business Media, 2013.
51. J. Jamnik, B. Kamp, R. Merkle, J. Maier, "Space Charge Influenced Oxygen Incorporation in Oxides: In How Far Does It Contribute to the Ddrift of Taguchi Sensors?." Solid State Ionics, Vol.150, p.157-166, 2002.
52. B. Kamp, R. Merkle, R. Lauck, J. Maier, "Chemical diffusion of oxygen in tin dioxide: Effects of dopants and oxygen partial pressure." Journal of Solid State Chemistry, Vol.178, p.3027-3039, 2005.
53. C. M. Aldao, D. A. Mirabella, M. A. Ponce, A. Giberti, C. Malagù, "Role of Intragrain Oxygen Diffusion in Polycrystalline Tin Oxide Conductivity." Journal of Applied Physics, Vol.109, p.063723, 2011.
54. F. Hernandez-Ramirez, J. D. Prades, A. Tarancon, S. Barth, O. Casals, R. Jimenez-Diaz, et. al., "Insight into the Role of Oxygen Diffusion in the Sensing Mechanisms of SnO2 Nanowires." Adv. Funct. Mater Vol.18, p.2990-2994, 2008.
55. L. J. Curtis, H. G. Berry, J. Bromander, "Analysis of Multi-Exponential Decay Curves." Physica Scripta Vol.2, p.216, 1970.
56. J. Enderlein, R. Erdmann, "Fast Fitting of Multi-Exponential Decay Curves," Optics Communications Vol.134, p.371-378, 1997.
57. T. A. White, S. M. Arachchige, B. Sedai, K. J. Brewer, "Emission Spectroscopy as a Probe Into Photoinduced Intramolecular Electron Transfer in Polyazine Bridged Ru (II), Rh (III) Supramolecular Complexes," Materials Vol.3, p.4328-4354, 2010.
58. S. Fukuzumi, K. Doi, A. Itoh, T. Suenobu, K. Ohkubo, Y. Yamada, K. D. Karlin, "Formation of a Long-Lived Electron-Transfer State in Mesoporous Silica-Alumina Composites Enhances Photocatalytic Oxygenation Reactivity." Proceedings of the National Academy of Sciences Vol.109, p.15572-15577, 2012. |