博碩士論文 101324061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.222.184.40
姓名 李柏明(Po-Ming Lee)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 表面氧吸附對二氧化錫薄膜之光電流影響研究
(Effect of Surface Oxygen Adsorption on Photocurrent of SnO2 Thin-film)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 此論文研究之目的為探討化學吸附在二氧化錫薄膜表面之氧離子造成二氧
化錫薄膜之光電流增強機制。由實驗結果發現二氧化錫薄膜經過氧氣環境下熱退
火後,紫外光雷射激發之光電流會明顯地增強。藉由光電子能譜儀(XPS)以及光
激發螢光光譜儀(PL)分析可得知,經過氧氣環境下熱退火之二氧化錫薄膜表面之
化學吸附氧離子數量會明顯增加。由於化學吸附之氧離子會與二氧化錫薄膜靠近
表面之氧空缺形成空間電荷區及內建電場,我們認為受光激發之電子電洞對會受
此內建電場之影響而快速分離。此電子電洞快速分離的現象可使光激發之電子電
洞對覆合機率降低、並且延長電子電洞對的生命期,因此,我們認為此電子電洞
加速分離的現象為表面化學吸附之氧離子能有效提升二氧化錫薄膜光電流之主
因。另外,我們也從理論計算方面著手研究此電子電洞分離現象。將實際情況下
氧空缺濃度於薄膜中為縱深分布代入並修正poisson’s 公式,可計算出表面空間
電荷區之寬度為4.32 nm。利用此空間電荷區寬度,可計算電子電洞分離並跨越
表面空間電荷區所需之時間,藉此驗證此電子電洞分離現象是否存在。計算所得
之電子電洞分離並跨越表面空間電荷區所需之時間為3.31  10-10 s。計算結果顯
示電子電洞分離並跨越表面空間電荷區所需之時間遠小於一般二氧化錫之激子
的生命期,因此,我們認為以上的計算驗證結果顯示表面空間電荷區可於電子電
洞對覆合前將其分離。由以上實驗及計算的驗證結果可證明表面氧吸附所產生之
表面空間電荷區可有效分離電子電洞並增強光激發載子之生命期。
摘要(英) In this study, we report a photocurrent generation mechanism in the SnO2 thin film
by the charged chemisorption O ions on the SnO2 thin film surface induced by O2-
annealing. Both XPS and PL results indicate that the amount of the surface
chemisorption O ions of the SnO2 thin film increases with being annealed in O2 ambient.
The surface chemisorption O ions would form the surface space charge region and the
build-in electric field in the SnO2 thin film, which would separate the photo-excited
electron-hole pairs by UV-laser irradiation (266 nm) in the SnO2 surface layer. This
phenomenon can prolong the lifetime and reduce the recombination probability of the
photo-excited electron-hole pairs. That is the key for the photocurrent generation in
the SnO2 thin film by the charged chemisorption O ions. We also investigate the
phenomenon of the separation of photo-excited electron-hole pairs by the theoretical
calculation. We find that the width of space charge region from the results of poisson’s
equation do not conform with the common width of the space charge region.
Therefore, we assume that the oxygen vacancy concentration is not constant, but a
profile distributing from surface into thin films. The calculated width of the space
charge region is 4.32 nm. Since the time of the separation of electron-hole pairs is
shorter than the time of the recombination, we can study the time of separation of
electron-hole pairs by built-in electric field to verify the enhancement of lifetime of
photo-carriers. The time of electron drift across the space charge region is calculated
to be about 3.31  10-10 s. This results can prove that the space charge region of the
surface oxygen adsorptions can effectively separate the electron-hole pairs and enhance
the lifetime of photo-carriers.
關鍵字(中) ★ 二氧化錫
★ 氧吸附
★ 光電流
關鍵字(英)
論文目次 中文摘要 I
Abstract II
Table of contents III
List of figures IV
List of tables VII
Chapter 1 Introduction 1
1.1 Transparent conductive oxide 1
1.2 Transparent conductive SnO2 3
1.3 Oxygen adsorption on SnO2 surface 4
1.4 Observation of oxygen adsorptions 9
Chapter 2 Motivation 13
Chapter 3 Experimental procedure 17
3.1 Fabrication of SnO2 thin films 17
3.2 Measurement of potential barrier 18
3.3 Instrumental analysis 19
Chapter 4 Characteristic of SnO2 photodetector 21
4.1 Photocurrent of SnO2 thin films 21
4.2 XRD, XPS and PL spectrum analysis 34
4.3 Potential barrier of surface space charge region 44
Chapter 5 Mechanism of the photocurrent enhancement 46
5.1 Lifetime of photo-carrier 46
5.2 Space charge region of surface oxygen adsorption 49
5.3 Time function of carrier position in space charge region 58
Chapter 6 Summary 62
Reference 63
參考文獻

1. J. K. Kim, T. Gessmann, E. F. Schubert, J.-Q. Xi, H. Luo, J. Cho, et al., "GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer," Applied Physics Letters, Vol. 88, p. 013501, 2006.
2. A. Braun, B. Hirsch, E. A. Katz, J. M. Gordon, W. Guter, and A. W. Bett, "Localized irradiation effects on tunnel diode transitions in multi-junction concentrator solar cells," Solar Energy Materials and Solar Cells, Vol. 93, pp. 1692-1695, 2009.
3. M. Yamaguchi, "III–V compound multi-junction solar cells: present and future," Solar Energy Materials and Solar Cells, Vol. 75, pp. 261-269, 2003.
4. B.-Y. Oh, M.-C. Jeong, T.-H. Moon, W. Lee, J.-M. Myoung, J.-Y. Hwang, et al., "Transparent conductive Al-doped ZnO films for liquid crystal displays," Journal of Applied Physics, Vol. 99, p. 124505, 2006.
5. Y. Leterrier, L. Médico, F. Demarco, J. A. E. Månson, U. Betz, M. F. Escolà, et al., "Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays," Thin Solid Films, Vol. 460, pp. 156-166, 2004.
6. H. Aswin, K. Taweewat, Y. Ihsanul Afdi, M. Shinsuke, and K. Makoto, "ZnO Films with Very High Haze Value for Use as Front Transparent Conductive Oxide Films in Thin-Film Silicon Solar Cells," Applied Physics Express, Vol.3, p. 051102, 2010.
7. P. Tiwana, P. Docampo, M. B. Johnston, H. J. Snaith,; L. M. Herz, "Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells," Acs Nano, Vol.5, p.5158-5166, 2011.
8. J. Zhao, X. J. Zhao, J. M. Ni, H. Z. Tao, "Structural, Electrical and Optical Properties of P-Type Transparent Conducting SnO2:Al Film Derived from Thermal Diffusion of Al/SnO2/Al Multilayer Thin Films." Acta Materialia, Vol.58, p.6243-6248, 2010.
9. S. S. Pan, G. H. Li, L. B. Wang, Y. D. Shen, Y. Wang, T. Mei, et al., "Atomic Nitrogen Doping and P-Type Conduction in SnO2," Applied Physics Letters, Vol.95, p.222112, 2009.
10. Soumen Das, V. Jayaraman, "SnO2: A Comprehensive Review on Structures and Gas Sensors," Progress in Materials Science, Vol.66, p.112-255, 2014.
11. Y. Huang, G. Li, J. Feng, Q. Zhang, "Investigation on Structural, Electrical and Optical Properties of Tungsten-Doped Tin Oxide Thin Films," Thin Solid Films, Vol.518, p.1892-1896, 2010.
12. A. R. Babar, S. S. Shinde, A. V. Moholkar, C. H. Bhosale, J. H. Kim, K. Y. Rajpure, "Physical Properties of Sprayed Antimony Doped Tin Oxide Thin Films: The Role of Thickness," Journal of Semiconductors, Vol.32, p.053001, 2011.
13. A. Benhaoua, A. Rahal, B. Benhaoua, M. Jlassi, "Effect of Fluorine Doping on the Structural, Optical and Electrical Properties of Sno2 Thin Films Prepared by Spray Ultrasonic," Superlattices and Microstructures, Vol.70, p.61-69, 2014.
14. E. Elangovan, K. Ramamurthi, "A Study on Low Cost-High Conducting Fluorine and Antimony-Doped Tin Oxide Thin Films," Applied Surface Science, Vol.249, p.183-196, 2005.
15. E. Elangovan, S. A. Shivashankar, K. Ramamurthi, "Studies on Structural and Electrical Properties of Sprayed Sno2:Sb Films," Journal of Crystal Growth, Vol.276, p.215-221, 2005.
16. K. Narasimha Rao, K. S. Shamala, L. C. S. Murthy, "Effect of Antimony and Fluorine Doping on Electrical, Optical and Structural Properties of Tin Oxide Films Prepared by Spray Pyrolysis Method," Surface Review and Letters, Vol.13, p.357-364, 2006.
17. A. Rahal, S. Benramache, B. Benhaoua, "The Effect of the Film Thickness and Doping Content of Sno2:F Thin Films Prepared by the Ultrasonic Spray Method, " Journal of Semiconductors, Vol.34, p.093003, 2013.
18. G. Rey, C. Ternon, M. Modreanu, X. Mescot, V. Consonni, D. Bellet, "Electron Scattering Mechanisms in Fluorine-Doped Sno2 Thin Films, " Journal of Applied Physics, Vol.114, p.183713, 2013.
19. T. Tsuchiya, T. Nakajima, K. Shinoda, "Electrical Properties of Sb-Doped Epitaxial Sno2 Thin Films Prepared Using Excimer-Laser-Assisted Metal–Organic Deposition, " Applied Physics B, Vol.113, p.333-338, 2013.
20. H. Liu, J. Wan, Q. Fu, M. Li, W. Luo, Z. Zheng, et al., "Tin oxide films for nitrogen dioxide gas detection at low temperatures," Sensors and Actuators B, Vol.177, p. 460-466, 2013.
21. V. Bonu, A. Das, A. K. Prasad, N. G. Krishna, S. Dhara, A.K. Tyagi, "Influence of in-plane and bridging oxygen vacancies of SnO2 nanostructures on CH4 sensing at low operating temperatures," Applied Physics Letters, Vol.105, p.243102, 2014.
22. A. Katoch, S. W. Choi, H. W. Kim, S. S. Kim, "Highly sensitive and selective H2 sensing by ZnO nanofibers and the underlying sensing mechanism," Journal of Hazardous Materials, Vol.286, p. 229-235, 2015.
23. A. Gurlo, "Interplay between O2 and SnO2: Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen," ChemPhysChem, Vol.7, p.2041-2052, 2006.
24. M. Batzill, U. Diebold, "The surface and materials science of tin oxide," Progress in Surface Science, Vol.79, p.45-154, 2005.
25. M. Epifani, J. D. Prades, E. Comini, E. Pellicer, M. Avella, P. Siciliano, et al., "The Role of Surface Oxygen Vacancies in the NO2 Sensing Properties of SnO2 Nanocrystals," Journal of Physical Chemistry C, Vol.112, p.19540-19546, 2008.
26. Y. F. Sun, S. B. Liu, F. L. Meng, J. Y. Liu, Z. Jin, L. T. Kong, et. al., "Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review," Sensors, Vol.12, p.2610-2631, 2012.
27. N. Barsan, U. Weimar, "Conduction Model of Metal Oxide Gas Sensors," Journal of Electroceramics, Vol.7, p.143-167, 2001.
28. N. Barsan, D. Koziej, U. Weimar, "Metal oxide-based gas sensor research: How to?" Sensors and Actuators B, Vol.121, p.18-35, 2007.
29. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, "Metal Oxide Gas Sensors: Sensitivity and Influencing Factors," Sensors, Vol.10, p.2088-2106, 2010.
30. S. Wu, S. Yuan, L. Shi, Y. Zhao, J. Fang, "Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals," Journal of Colloid and Interface Science, Vol.346, p.12-16, 2010.
31. J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, et. al., "Oxygen Vacancy Induced Band-Gap Narrowing and Enhanced Visible Light Photocatalytic Activity of ZnO," ACS Applied Materials & Interfaces, Vol.4, p.4024-4030, 2012.
32. Y. B. Lin, Y. M. Yang, B. Zhuang, S. L. Huang, L. P. Wu, Z. G. Huang, et. al., "Ferromagnetism of Co-doped TiO2 films prepared by plasma enhanced chemical vapour deposition (PECVD) method," Journal of Physics D, Vol.41, p.195007, 2008.
33. E. R. Viana, J. C. González, G. M. Ribeiro, A. G. de Oliveira, "Photoluminescence and High-Temperature Persistent Photoconductivity Experiments in SnO2 Nanobelts," Journal of Physical Chemistry C, Vol.117, p.7844-7849, 2013.
34. Y. Lin, D. Wang, Q. Zhao, Z. Li, Y. Ma, M. Yang, "Influence of adsorbed oxygen on the surface photovoltage and photoluminescence of ZnO nanorods," Nanotechnology, Vol.17, p.2110-2115, 2006.
35. R. A. Bardosa, T. Trupke, M. C. Schubert, T. Roth, "Trapping artifacts in quasi-steady-state photoluminescence and photoconductance lifetime measurements on silicon wafers," Applied Physics Letters, Vol.88, p.053504, 2006.
36. B. Li, D. Shaughnessy, A. Mandelis, "Measurement accuracy analysis of photocarrier radiometric determination of electronic transport parameters of silicon wafers," Journal of Applied Physics, Vol.97, p.023701, 2005.
37. P. D. Persans, N. E. Berry, D. Recht, D. Hutchinson, H. Peterson, J. Clark, et. al., "Photocarrier lifetime and transport in silicon supersaturated with sulfur," Applied Physics Letters, Vol.101, p.111105, 2012.
38. A. Kar, S. Kundu, A. Patra, "Surface Defect-Related Luminescence Properties of SnO2 Nanorods and Nanoparticles," Journal of Physical Chemistry C, Vol.115, p.118-124, 2011.
39. S. S. Pan, S. Wang, Y. X. Zhang, Y. Y. Luo, F. Y. Kong, S. C. Xu, J. M. Xu, G. H. Li, "P-Type Conduction in Nitrogen-Doped SnO2 Films Grown by Thermal Processing of Tin Nitride Films," Applied Physics A, Vol. 109, p.267-271, 2012.
40. J. Wang, D. N. Tafen, J. P. Lewis, Z. L. Hong, A. Manivannan, M. J. Zhi, M. Li, N. Q. Wu, "Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts," Journal of the American Chemical Society, Vol. 131, p.12290–12297, 2009.
41. Y. Wu, H. Liu, J. Zhang, F. Chen, "Enhanced Photocatalytic Activity of Nitrogen-Doped Titania by Deposited with Gold," The Journal of Physical Chemistry C, Vol.113, p.14689–14695, 2009.
42. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, "Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides," Science, Vol.293, p.269-271, 2001.
43. C. L. Perkins, S.-H. Lee, X. Li, S. E. Asher, T. J. Coutts, "Identification of Nitrogen Chemical States in N-Doped ZnO Via X-Ray Photoelectron Spectroscopy," Journal of Applied Physics, Vol.97, p.034907, 2005.
44. B. Ullrich, X. Haowen, "Photocurrent Theory Based on Coordinate Dependent Lifetime," Optics letters, Vol.35, p.3910-3912, 2010.
45. B. Ullrich, X. Haowen, "Photocurrent Limit in Nanowires," Optics letters, Vol.38, p.4698-4700, 2013.
46. K. Wijeratne, J. Akilavasan, M. Thelakkat, J. Bandara, "Enhancing the Solar Cell Efficiency Through Pristine 1-dimentional SnO2 Nanostructures: Comparison of Charge Transport and Carrier Lifetime of SnO2 Particles vs. Nanorods," Electrochimica Acta, Vol.72, p.192-198, 2012.
47. U. V. Desai, C. Xu, J. Wu, D. Gao, "Hybrid TiO2–SnO2 Nanotube Arrays for Dye-Sensitized Solar Cells," The Journal of Physical Chemistry C, Vol.117, p.3232-3239, 2013.
48. N. Barsan, M. Hübner, U. Weimar, "Conduction Mechanisms in SnO2 Based Polycrystalline Thick Film Gas Sensors Exposed to CO and H2 in Different Oxygen Backgrounds." Sensors and Actuators B: Chemical Vol.157, p.510-517, 2011.
49. E. Comini, F. Guido, S. Giorgio, eds. Solid State Gas Sensing. Vol.20, Springer Science & Business Media, 2008.
50. W. Mönch, Semiconductor Surfaces and Interfaces. Vol.26, Springer Science & Business Media, 2013.
51. J. Jamnik, B. Kamp, R. Merkle, J. Maier, "Space Charge Influenced Oxygen Incorporation in Oxides: In How Far Does It Contribute to the Ddrift of Taguchi Sensors?." Solid State Ionics, Vol.150, p.157-166, 2002.
52. B. Kamp, R. Merkle, R. Lauck, J. Maier, "Chemical diffusion of oxygen in tin dioxide: Effects of dopants and oxygen partial pressure." Journal of Solid State Chemistry, Vol.178, p.3027-3039, 2005.
53. C. M. Aldao, D. A. Mirabella, M. A. Ponce, A. Giberti, C. Malagù, "Role of Intragrain Oxygen Diffusion in Polycrystalline Tin Oxide Conductivity." Journal of Applied Physics, Vol.109, p.063723, 2011.
54. F. Hernandez-Ramirez, J. D. Prades, A. Tarancon, S. Barth, O. Casals, R. Jimenez-Diaz, et. al., "Insight into the Role of Oxygen Diffusion in the Sensing Mechanisms of SnO2 Nanowires." Adv. Funct. Mater Vol.18, p.2990-2994, 2008.
55. L. J. Curtis, H. G. Berry, J. Bromander, "Analysis of Multi-Exponential Decay Curves." Physica Scripta Vol.2, p.216, 1970.
56. J. Enderlein, R. Erdmann, "Fast Fitting of Multi-Exponential Decay Curves," Optics Communications Vol.134, p.371-378, 1997.
57. T. A. White, S. M. Arachchige, B. Sedai, K. J. Brewer, "Emission Spectroscopy as a Probe Into Photoinduced Intramolecular Electron Transfer in Polyazine Bridged Ru (II), Rh (III) Supramolecular Complexes," Materials Vol.3, p.4328-4354, 2010.
58. S. Fukuzumi, K. Doi, A. Itoh, T. Suenobu, K. Ohkubo, Y. Yamada, K. D. Karlin, "Formation of a Long-Lived Electron-Transfer State in Mesoporous Silica-Alumina Composites Enhances Photocatalytic Oxygenation Reactivity." Proceedings of the National Academy of Sciences Vol.109, p.15572-15577, 2012.
指導教授 劉正毓 審核日期 2017-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明