參考文獻 |
[1] http://web2.yzu.edu.tw/e_news/585/10_new01.html (2017 年8 月11日)
[2] http://en.wikipedia.org/wiki/Gustav_Rose (2017 年8 月11 日)
[3] Sun, S.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing,G.; Sum, T, C.; Lam, Y, M., The origin of high efficiency in low-temperaturesolution-processable bilayer organometal halidehybrid solar cells, Energy Environ. Sci. 2014, 7, 399-407.
[4] Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-Sensitized Solar Cells, Chem. Rev. 2010, 110, 6595-6663.
[5] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc. 2009, 131, 6050-6051.
[6] Kim, H, S.; Lee, C, R.; Im, J, H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Baker, R. H.; Yum, J. H.; Moser, J. E.; Gra¨tzel, M.; Park, N.-G., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Sci. Rep. 2012, 2, 591-597.
[7] Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F.; Chen, P.; Wen, T.-C., CH3NH3PbI3 Perovskite/Fullerene Planar- Heterojunction
Hybrid Solar Cell, Adv. Mater, 2013, 25, 3727–3732.
[8] Chiang, C.-H.; Lin, J.-W.; Wu, C.-G., One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module, J. Mater. Chem. A, 2016, 4, 13525-13533.
[9] Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin M. K.; Gratzel, M., Sequential deposition as a route to high performance perovskite sensitized solar cell, Nature, 2013, 499, 316–319.
[10] Chiang, C.-H.; Nazeeruddin, M.-K.; Gratzel, M.; Wu, C.-G., The synergistic effect of H2O and DMF toward stable and 20% efficiency inverted perovskite solar cells, Energy Environ. Sci., 2017, 10, 808-817.
[11] Jeon, N.- J.; Noh, J.- H.; Kim, Y.- C.; Yang, W.- S.; Ryu, S.; Seok, S, Il., Solvent engineering for high-performanceinorganic–organic hybrid perovskite solar cells, Nature Materials, 2014, 13, 897-903.
[12] Chiang, C.-H.; Wu, C.-G., Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells, ChemSusChem, 2016, 9, 2666 –2672.
[13] Bi, C.; Wang,Q.; Shao,Y.; Yuan, Y.; Xiao, Z. and Huang, J., Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells, Nat. Commun., 2015, 6, 7747-7753.
[14] Huang, C.; Fu, W.; Li, C.-Z.; Zhang, Z.; Qiu, W.; Shi, M.; Heremans, P.; Jen, K.-Y.; Chen, H., Dopant-Free Hole-Transporting Material with a C3h Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells, J. Am. Chem. Soc., 2016, 138 (8), 2528–2531.
[15] Li,Y.; Xu, Z.; Zhao, S.; Xiao, B.; Huang, D.; Zhao, L.; Zhao, J.; Wang, P.; Zhu, Y.; Li, X.; Liu, X.; Xu, X., Highly Efficient p-i-n Perovskite Solar Cells Utilizing Novel Low-Temperature Solution-Processed Hole Transport Materials with Linear π-Conjugated Structure, Small, 2016, 01, 1603-1609.
[16] Hu, Z.; Fu, W.; Yan, L.; Miao, J.; Yu, H.; He, Y.; Osamu, G.; Meng, H.; Chen, H.; Huang, W., Effects of heteroatom substitution in spirobifluorene hole transport materials, Chem. Sci. 2016, 7, 5007-5012.
[17] http://highscope.ch.ntu.edu.tw/wordpress/?p=41141 (2017年8月11日)
[18] Yang, W.-S.; Park, P.-W.; Jung, E.-H.; Jeon, N.-J.; Kim, Y.-C.; Lee, D.-U.; Shin, S.-S.; Seo, J.; Kim, E.-K.; Noh, J.-H. Seok, S, Il., Iodide management in formamidinium-lead-halide–based perovskite layers
for efficient solar cells, Science, 2017, 356, 1376–1379.
[19] Park, S.-J., Jeon, S.; Lee. I.-K.; Zhang, J.; Jeong, H.; Park, J.-Y.; Bang, J.; Ahn, T.-K.; Shin, H.-W.; Kim, B.-G.; Park, H.-J., Inverted planar perovskite solar cells with dopant free hole transporting material: Lewis base-assisted passivation and reduced charge recombination, J. Mater. Chem. A, 2017, 5, 13220-13227.
[20] Xu, B.; Bi, D.; Hua, Y.; Liu, P.; Cheng, M.; Gratzel, M.; Kloo, R.; Hagfeldt, A.; Sun, L., A low-cost spiro[fluorene-9,90-xanthene]- based hole transport material for highly efficient solid-state dye-sensitized solar cells and perovskite solar cells, Energy Environ.
Sci., 2016, 9, 873-877.
[21] Yang, L.; Yan, Y.; Cai, F.; Li, J.; Wang, T., Poly(9-vinylcarbazole) as a hole transport material for efficient and stable inverted planar
heterojunction perovskite solar cells, Solar Energy Materials & Solar Cells, 2017, 163, 210-217.
[22] Malinkiewicz, O.; Yella, A.; Lee, Y.-H.; Espallargas, G.-M.; Graetzel, M.; Nazeeruddin, M.-K.; Bolink, H.-J., Perovskite solar cells employing organic charge-transport layers, Nat. Photon.,2014, 8, 128–132.
[23] Tsai, K.-W.; Chueh, C.-C.; Williams, S.-T.; We, T.-C.; Jen, K.-Y., High-performance hole transporting layer-free conventional perovskite/fullerene heterojunction thin-film solar cells, J. Mater. Chem. A, 2015, 3, 9128–9132.
[24] Li, Y.; Ye, S.; Sun, W.; Yan, W.; Li, Y.; Bian, Z.; Liu, Z.; Wang, S.; Huang, C., Hole-conductor-free planar perovskite solar cells with 16.0% efficiency, J. Mater. Chem. A, 2015, 3, 18389–18394.
[25] Zhao, K.; Munir, R.; Yan, B.; Yang, Y.; Kim, T.; Amassian, A., Solution-processed inorganic copper (I) thiocyanate (CuSCN) hole transporting layers for efficient p–i–n perovskite solar cells, J. Mater. Chem. A, 2015, 3, 20554-20559.
[26] Grisorio, R.; Iacobellis, R.; Listorti, A.; Marco, L.-D.; Cipolla, M.-A.; Manca, M.; Rizzo, A.; Abate, A.; Gigli, G.; Suranna, G.-P., Rational Design of Molecular Hole-Transporting Materials for Perovskite Solar Cells: Direct versus Inverted Device Configurations, ACS Appl.
Mater. Interfaces, 2017, 9, 24778−24787.
[27] Peng, S.-H.; Huang, T.-W.; Gollavelli, G.; Hsu, C.-S., Thiophene and diketopyrrolopyrrole based conjugated polymers as efficient alternatives to spiro-OMeTAD in perovskite solar cells as hole transporting layers, J. Mater. Chem. C, 2017, 5, 5193-5198.
[28] Neophytou, M.; Griffiths, J.; Fraser, J.; Kirkus, M.; Chen, H.; Nielsen, C.-B.; McCulloch, I., High mobility, hole transport materials for highly efficient PEDOT:PSS replacement in inverted perovskite solar cells, J. Mater. Chem. C, 2017, 5, 4940-4945.
[29] Ji, G.; Zheng, G.; Zhao, B.; Song, F.; Zhang, X.; Shen, K.; Yang, Y.; Xiong, Y.; Gao, X.; Cao, L.; Qi, D.-C., Interfacial electronic structures revealed at the rubrene/CH3NH3PbI3 interface, Phys. Chem. Chem. Phys., 2017,19, 6546-6553.
[30] Liu, D.; Li, Y.; Yuan, J.; Hong, Q.; Shi, G.; Yuan, D.; Wei, J.; Huang, C.; Tang, J.; Fung, M.-K., Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole transport layers, J. Mater. Chem. A, 2017, 5, 5701-5708.
[31] Lin, Q.; Jiang, W.; Zhang, S.; Nagiri, R.-C.-R.; Jin, H.; Burn, P.-L.; Meredith, P., A Triarylamine-Based Anode Modifier for Efficient Organohalide Perovskite Solar Cells, ACS Appl. Mater. Interfaces, 2017, 9, 9096–9101.
[32] Yan, W.; Li, Y.; Ye, S.; Li, Y.; Rao, H.; Liu, Z.; Wang, S.; Bian,Z.; Huang, C., Increasing open circuit voltage by adjusting work function of hole-transporting materials in perovskite solar cells, Nano Research, 2016, 9, 1600–1608. |