博碩士論文 104324063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.135.248.144
姓名 吳碧卿(Bi-Ching Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 製備矽膠固著聚苯胺吸附劑及吸脫附試驗與氣化合成氣經富氧燃燒後之變壓吸附程序二氧化碳純化實驗
(Experimental study of CO2 Adsorption / Desorption with Solid Polyaniline Sorbent and Concentrating High Purity CO2 from Syngas after Oxy-fuel Combustion by Pressure Swing Adsorption Process)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著科技發展溫室效應造成全球暖化日益嚴重,而其中減少溫室氣體排放已成為重要議題。
本研究分為兩部分,第一部分為台電綜合研究所之製備矽膠固著聚苯胺吸附劑及吸脫附試驗。探討矽膠固著聚苯胺之二氧化碳吸附劑合成的不同條件,並以造粒方法探討製備矽膠固著聚苯胺吸附劑的最佳條件。利用探討造粒前後合成溫度,合成時間,反應物濃度,矽膠固著聚苯胺之固態吸附劑能力等因素的影響,並藉由微量天秤Thermo Cahn D-200測量吸附量和吸附等溫線,並以一大氣壓下,以發電廠氣體比例15%二氧化碳及85%氮氣計算選擇率。再以台電綜合研究所之熱重分析儀測量觀察本研究矽膠固著聚苯胺吸附劑吸附力衰變測試,並對吸附劑性能的影響進行探討。
本研究第二部分為氣化合成氣經富氧燃燒後之變壓吸附程序二氧化碳純化實驗。選用UOP 13X 沸石作為吸附劑,進料氣體為95%二氧化碳與5%氮氣。將吸附劑填入吸附塔進行突破曲線與脫附曲線實驗,藉由改變不同流量、溫度等探討突破曲線與脫附曲線的影響,進而以單塔四步驟變壓吸附程序純化二氧化碳,並探討如溫度、進料壓力、抽真空壓力、步驟時間等變因對其回收率、濃度的影響,研究最適化的操作條件,以獲得高純度二氧化碳。
摘要(英)
With technology development, the greenhouse effect is becoming more and more serious. Reducing greenhouse gas emissions has become an important issue.
The first part of the study is the experimental study of CO2 adsorption / desorption with Solid Polyaniline Sorbent of Taiwan Power Company (Taipower). Changing the different conditions for the synthesis of solid polyaniline carbon dioxide sorbent and the preparation of pelletization procedures obtains the optimal condition for producing solid polyaniline sorbent. The effects of different factors such as synthesis temperature, synthesis time, compound concentration and the adsorption capacity of solid polyaniline carbon dioxide sorbent before and after pelletization were discussed. Adsorption amount and adsorption isotherm were obtained by used Micro-Balance Thermo Cahn D-200 and selectivity of carbon dioxide with respect to nitrogen is calculated based on 15% CO2 / 85% N2 feed at 1 atm. The degree of adsorption amount decay of sorbent is obtained by using TGA of Taipower Research Institute.
The second part of the study is the experimental study of concentrating high purity CO2 from syngas after oxy-fuel combustion by pressure swing adsorption process. UOP 13X zeolite was used as the adsorbent, and the feed gas was 95% CO2 / 5% N2.
Breakthrough curves and desorption curves were discussed by changing the pressure and temperature. Next the carbon dioxide was purified by single-bed four steps pressure swing adsorption procedure. Variables such as temperature, feed pressure, vacuum pressure and step time were discussed to find their effects on CO2 recovery and purity in order to study the optimal operating conditions for obtaining high purity carbon dioxide.
關鍵字(中) ★ 變壓吸附程序
★ 突破曲線
★ 脫附曲線
★ 二氧化碳
★ 選擇率
★ 等溫吸附平衡曲線
關鍵字(英) ★ pressure swing adsorption process
★ adsorption curve
★ desorption curve
★ CO2
★ selectivity
★ isotherm
論文目次
摘要 i
abstract ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xix
第一章、緒論 1
第二章、簡介與文獻回顧 6
2-1 吸附之簡介 6
2-1-1 吸附基本原理 6
2-1-2 吸附劑及其選擇率參數 9
2-1-3 PSA 程序之發展與改進 11
2-1-4 突破曲線 16
2-1-5 高純度變壓吸附文獻回顧 18
2-2 矽膠固著聚苯胺吸附劑之製備相關文獻回顧 20
2-2-1 胺基化處理 21
2-2-2 苯胺聚合物反應 26
2-2-3 吸附劑造粒 32
2-2-4 等溫平衡吸附曲線 35
2-3 吸附劑比較 37
第三章、矽膠固著聚苯胺吸附劑實驗設備及方法 38
3-1 矽膠固著聚苯胺吸附劑之製備 38
3-1-1 實驗藥品 39
3-1-2 矽膠固著聚苯胺吸附劑製備流程 40
3-1-3 矽膠固著聚苯胺吸附劑造粒流程 46
3-1-4 矽膠固著聚苯胺吸附劑代號說明 48
3-2 等溫平衡吸附曲線實驗 50
3-2-1 實驗裝置 50
3-2-2 實驗裝置之操作流程 54
3-2-3 天平校正 55
3-2-4 空白實驗 55
3-3 矽膠固著聚苯胺吸附劑吸附力衰變測試實驗 56
第四章、製備矽膠固著聚苯胺吸附劑及吸脫附試驗結果與討論 57
4-1 浮力校正結果 57
4-2 矽膠固著聚苯胺吸附劑吸附量及性質探討 65
4-2-1 溫度對吸附劑造粒前後吸附量影響 66
4-2-2 矽膠固著聚苯胺吸附劑之粉體(100~200 mesh)吸附量 68
4-2-3 矽膠固著聚苯胺吸附劑之顆粒吸附量及其選擇率 75
4-2-4 矽膠固著聚苯胺吸附劑之針筒造粒及非針筒造粒比較 90
4-3 吸附力衰變測試 92
第五章、氣化合成氣經富氧燃燒後之變壓吸附程序實驗設備及方法 96
5-1 變壓吸附程序吸附劑選擇 96
5-2 突破曲線實驗與脫附曲線實驗 98
5-2-1 實驗裝置、各部規格及特性 98
5-2-2 實驗步驟 102
5-3 變壓吸附實驗 103
5-3-1 變壓吸附實驗裝置、各部規格及特性 106
5-3-2 實驗步驟 109
第六章、氣化合成氣經富氧燃燒後之變壓吸附程序實驗結果與討論 112
6-1 吸附劑選擇計算與討論 112
6-2 突破曲線實驗與脫附曲線實驗結果與討論 118
6-2-1 流速對突破曲線的影響 120
6-2-2 進料組成對突破曲線的影響 122
6-2-3 塔內溫度對突破曲線的影響 124
6-2-4 流速對脫附曲線的影響 126
6-2-5 進料組成對脫附曲線的影響 128
6-2-6 塔內溫度對脫附曲線的影響 130
6-3 變壓吸附實驗結果與討論 132
6-3-1 同向減壓時間對單塔四步驟變壓吸附程序之影響 134
6-3-2 進料壓力對單塔四步驟變壓吸附程序之影響 137
6-3-3 高壓吸附時間對單塔四步驟變壓吸附程序之影響 141
6-3-4 逆向減壓壓力對單塔四步驟變壓吸附程序之影響 145
6-3-5 逆向減壓時間對單塔四步驟變壓吸附程序之影響 149
6-3-6 塔內溫度對單塔四步驟變壓吸附程序之影響 154
第七章、結論 158
7-1 製備矽膠固著聚苯胺吸附劑及吸脫附試驗 158
7-2氣化合成氣經富氧燃燒後之變壓吸附程序二氧化碳純化實驗 159
參考文獻 161
附錄A等溫平衡校正曲線詳細數據 166
附錄B 粉體等溫平衡吸附曲線詳細數據 177
附錄C顆粒等溫平衡吸附曲線詳細數據 197
附錄D 變壓吸附程序詳細數據 220
參考文獻 [1] 台灣電力公司, “歷年發電量占比,” 23 11 2016. [線上]. Available:http://www.taipower.com.tw/content/new_info/new_info-c37.aspx?LinkID=13.
[2] EIA, ”International Energy Outlook, 2016,” 11 5 2016. [Online]. Available:http://www.eia.gov/outlooks/ieo/exec_summ.cfm.
[3] EIA, ”Annual Energy Outlook 2017,” 15 1 2017. [Online]. Available:https://www.eia.gov/outlooks/aeo/pdf/0383(2017).pdf.
[4] 行政院環境保護署, “2016年中華民國國家溫室氣體排放清冊報告,” 2016. [線上]. Available:http://unfccc.saveoursky.org.tw/2016nir/index.php.
[5] J.C. Abanades, B. Arias, A. Lyngfelt, T. Mattisson, D.E. Wiley, H. Lic, M.T. Ho,E. Mangano and S. Brandani, ”Emerging CO2 capture systems,” International Journal of Greenhouse Gas Control, vol. 40, pp. 126-166, 2015.
[6] H. Krutka and S. Sjostrom, P.E., ”Evaluation of solid sorbents as a retrofit technology for CO2 capture from coal-fired power plants final technical report,” DOE Report No. 05649FR01, 2011.
[7] D. M. Todd, ”Gas Turbine Improvements Enhance IGCC Viability,” 2000 Gasification Technologies Conference, San Francisco, CA, 2000.
[8] A. Agarwal, Advanced strategies for optimal design and operation of, Proquest, 2010.
[9] C. Skarstrom, ”Esso research and engineering company”. US Patent 2944627, 1960.
[10] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and Technology, Kluwer Academic Publishers, 1988.
[11] W. K. Choi, T. I. Kwon, Y. K. Yeo, H. Lee , H. K. Song and B. K. Na, “Optimal Operation of the Pressure Swing Adsorption (PSA) Process,” Chemical Engineering, pp. 617-623, 2003.
[12] R.T.Yang, ”Gas Seperation by Adsorption Process,” London: Imperial College Press, 1997.
[13] D. D. a. M. P. G. De, ”Process for separating a binary gaseous mixture by adsorption”. United States Patent 3,155,468, 1964.
[14] R. T. Yang, ”Gas seperation by adsorption process,” World Scientific, 1997.
[15] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, ”Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon,” Ind. Eng. Chem. Res., vol. 41, pp. 5498-5503, 2002.
[16] K. Chihara and M. Suzuki, ”Air drying by pressure swing adsorption,” J. Chem. Eng. Jpn., vol. 16, pp. 293-299, 1983.
[17] J. J. Collins, ”Air separation by adsorption”. United States Patent 4,026,680, 1975.
[18] Y.H. Kim, J.J. Kim, and C.H. Lee, ”Adsorptive Cyclic Purification Process for CO2 Mixtures Captured from Coal Power Plants,” American Institute of Chemical Engineers, vol. 63, pp. 3, 3 2017.
[19] Z. Liu,L. Wang,X. Kong,P. Li,J. Yu,A.E. Rodrigues, ”Onsite CO2 Capture from Flue Gas by an Adsorption Process in a Coal-Fired Power Plant,” Ind. Eng. Chem. Res., vol. 51, pp. 7355-7363, 2012.
[20] E. R. A. Fuderer, ”Selective adsorption process”. United States Patent 3,986,849, 1976.
[21] M. Yavary, H.A. Ebrahim and C. Falamaki, ”The effect of number of pressure equalization steps on the performance of pressure swing adsorption process,” Chemical Engineering and Processing, vol. 87, pp. 35–44, 2015.
[22] A.K. Rajagopalan1, A.M. Avila and A. Rajendran, ”Do adsorbent screening metrics predict process performance? Aprocess optimisation based study for post-combustion capture of CO2,” International Journal of Greenhouse Gas Control, vol. 46, pp. 76–85, 2016.
[23] J. Ling, P. Xiao, A. Ntiamoah, D. Xu, P. Webley and Y. Zhai, ”Strategies for CO2 capture from different CO2 emission sources by vacuum swing adsorption technology,” Chinese Journal of Chemical Engineering, vol. 24, pp. 460–467, 2016.
[24] M. Khurana and S. Farooq, ”Simulation and optimization of a 6-step dual-reflux VSA cycle for post-combustion CO2 capture,” Chemical Engineering Science, vol. 152, pp. 507–515, 2016.
[25] K.T. Leperi, R.Q. Snurr, and F.You, ”Optimization of Two-Stage Pressure/Vacuum Swing Adsorption with Variable Dehydration Level for Postcombustion Carbon Capture,” Ind. Eng. Chem. Res., vol. 55, pp. 3338−3350, 2016.
[26] D.Li, Y.Zhou, Y. Shen, W. Sun, Q. Fu, H. Yan and D. Zhang, ”Experiment and simulation for separating CO2/N2 by dual-reflux pressure swing adsorption process,” Chemical Engineering Journal, vol. 297, pp. 315–324, 2016.
[27] J. Ling, A. Ntiamoah, P. Xiao, P. A. Webley and Y. Zhai, ”Effects of feed gas concentration, temperature and process parameters on vacuum swing adsorption performance for CO2 capture,” Chemical Engineering Journal, vol. 265, pp. 47–57, 2015.
[28] O. Leal, C. Bolivar, C. Ovalles, J.J. Garcia and Y. Espidel, ”Reversible adsorption of carbon dioxide on amine surface-bonded silica gel,” Inorg. Chim. Acta, vol. 240, pp. 183–189, 1995.
[29] H.Y. Huang, R.T. Yang, D. Chinn and C.L. Munson, ”Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas,” Ind. Eng. Chem. Res., vol. 42, pp. 2427–2433, 2003.
[30] G.P. Knowles, J.V. Graham, S.W. Delaney and A.L. Chaffee, ”Aminopropylfunctionalized mesoporous silica as CO2 adsorbents,” Fuel Process Technol., vol. 86, pp. 1435–1448, 2005.
[31] G.P. Knowles, S.W. Delaney and A.L. Chaffee, ”Diethylenetriamine[propyl(silyl)]-functionalized(DT) mesoporous silicas as CO2 adsorbents,” Ind. Eng. Chem. Res., vol. 45, pp. 2626–2633, 2006.
[32] P.J.E. Harlick and A. Sayari, ”Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption,” Ind. Eng. Chem. Res., vol. 45, pp. 3248 – 3255, 2006.
[33] Y. Belmabkhout and A. Sayari, ”Effect of pore expansion and aminefunctionalization of mesoporous silica on CO2 adsorption over a wide range of conditions,” Adsorption, vol. 15, pp. 318–328, 2009.
[34] A. Sayari, M. Kruk, M. Jaroniec and I.L. Moudrakovski, ”New approaches to pore size engineering of mesoporous silicates,” Adv. Mater., vol. 10, pp. 1376–1379, 1998.
[35] A. Sayari, ”Unprecedented expansion of the pore size and volume of periodic mesoporous silica,” Angew. Chem. Int. Ed., vol. 112, pp. 3042–3044, 2000.
[36] P.J.E. Harlick and A. Sayari, ”Applications of pore-expanded mesoporous silicas. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance,” Ind. Eng. Chem. Res., vol. 46, pp. 446–458, 2007.
[37] A. Sayari and Y. Belmabkhout, ”Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor,” J. Am. Chem. Soc., vol. 132, pp. 6312–6314, 2010.
[38] N. Hiyoshi, K. Yogo and T. Yashima, ”Adsorption characteristics of carbon dioxide on organically functionalized SBA-15,” Micropor. Mesopor. Mater., vol. 84, pp. 357–365, 2005.
[39] S.N. Kim, W.J. Son, J.S. Choi and W.S. Ahn, ”CO2 adsorption using aminefunctionalized mesoporous silica prepared via anionic surfactant-mediated synthesis,” Micropor. Mesopor. Mater., vol. 115, pp. 497–503, 2008.
[40] C. Knofel, J. Descarpenteries, A. Benzaouia, V. Zelenak, S. Mornet, P.L. Llewellyn and V. Hornebecq, ”Functionalized micro-/mesoporous silica for the adsorption of carbon dioxide,” Micropor. Mesopor. Mater., vol. 99, pp. 79–85, 2007.
[41] L. Wang, L. Ma, A. Wang, Q. Liu and T. Zhang, ”CO2 adsorption on SBA-15 modified by aminosilane,” Chin. J. Catal., vol. 28, pp. 805–810, 2007.
[42] J. Wei, J. Shi, H. Pan, W. Zhao, Q. Ye and Y. Shi, ”Adsorption of carbon dioxide on organically functionalized SBA-16,” Micropor. Mesopor. Mater., vol. 116, pp. 394–399, 2008.
[43] V. Zelenak, D. Halamova, L. Gaberova, E. Bloch and P. Llewellyn, ”Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: effect of amine basicity on sorption properties,” Micropor. Mesopor. Mater., vol. 116, pp. 358–364, 2008.
[44] C. Knofel, C. Martin, V. Hornebecq and P.L. Llewellyn, ”Study of carbon dioxide adsorption on mesoporous aminopropylsilane-functionalized silica and titania combining microcalorimetry and in situ infrared spectroscopy,” J. Phys. Chem. C, vol. 113, pp. 21726–21734, 2009.
[45] C. Lu, F. Su, S.C. Hsu, W. Chen, H. Bai, J.F. Hwang and H.H. Lee, ”Thermodynamics and regeneration of CO2 adsorption on mesoporous spherical-silica particles,” Fuel Process. Technol., vol. 90, pp. 1543–1549, 2009.
[46] C.W. Jones, J.C. Hicks, D.J. Fauth and M. Gray, ”Structures for capturing CO2, methods of making the structures and methods of capturing CO2”. US Patent US2007/0149398, 2007.
[47] J.C. Hicks, J.D. Drese, D.J. Fauth, M.L. Gray, G. Qi and C.W. Jones, ”Designing adsorbents for CO2 capture from flue gas – hyperbranched aminosilicas capable of capturing CO2 reversibly,” J. Am. Chem. Soc., vol. 130, pp. 2902–2903, 2008.
[48] J.H. Drese, S. Choi, R.P. Lively, W.J. Koros, D.J. Fauth, M.L. Gray and C.W. Jones, ”Synthesis–structure–property relationships for hyperbranched aminosilica CO2 adsorbents,” Adv. Func. Mater., vol. 19, pp. 3821-3832, 2009.
[49] Y. Choe, K.J. Oh, S.S. Kim and S.W. Park, ”Adsorption of carbon dioxide onto BDA-CP-MS41,” Korean J. Chem. Eng., vol. 27, no. 3, pp. 962-969, 2010.
[50] C.G. Wu and T. Bein, ”Conducting polyaniline filaments in a mesoporous channel host,” Science, vol. 264, pp. 1757-1759, 1994.
[51] T. Takei, K. Yoshimura, Y. Yonesaki, N. Kumada and N. Kinomura, ”Preparation of polyaniline/mesoporous silica hybrid and its electrochemical properties,” Journal of Porous Materials, vol. 12, pp. 337-343, 2005.
[52] J. Stejskal and M. Trchova, ”Surface Polymerization of Aniline on Silica Gel,” Langmuir, vol. 19, pp. 3013-3018, 2003.
[53] M. Gonza ´lez, B.G. Soares, M. Magioli , J.A. Marins and J. Rieumont, ”Facile method for synthesis of polyaniline/silica hybrid composites by simultaneous sol–gel process and ”in situ” polymerization of aniline,” J Sol-Gel Sci Technol, vol. 63, pp. 373–381, 2012.
[54] P.Yadav, J.S.Chauhan, P.Kannojia, N. K Jain and V.Tomar, ”A Review: On Scale-Up Factor Determination of Rapid Mixer Granulator,” Der Pharmacia Lettre, vol. 2, no. 5, pp. 23-38, 2010.
[55] M. Aslan, D. Weingarth,N.. Jackel, J.S. Atchison, I. Grobelsek and V. Presser, ”Polyvinylpyrrolidone as binder for castable supercapacitor electrodes with high electrochemical performance in organic electrolytes,” J. of Power Sources, vol. 266, pp. 374-383, 2014.
[56] A. Sharafian, K. Fayazmanesh, C. McCague and M. Bahrami, ”Thermal conductivity and contact resistance of mesoporous silica gel adsorbents bound with polyvinylpyrrolidone in contact with a metallic substrate for adsorption cooling system applications,” Int′l J. of Heat and Mass Transfer, vol. 79, pp. 64–71, 2014.
[57] H. Kozuka, A. Yamano, M. Fujita and H. Uchiyama, ”Aqueous dip-coating route to dense and porous silica thin films using silica nanocolloids with an aid of polyvinylpyrrolidone,” J Sol-Gel Sci Technol, vol. 61, pp. 81-389, 2012.
[58] Y. Xu, B. Zhang, W.H. Fan, D. Wu and Y. H. Sun, ”Sol–gel broadband anti-reflective single-layer silica films with high laser damage threshold,” Thin Solid Films, vol. 440, pp. 180-183, 2003.
[59] 藍啟仁, “苯胺基官能基固著矽膠固體吸收劑之製備方法”. 中華民國 專利: I409220, 2013.
[60] K. Kotoh, M.Tanaka, T. Sakamoto, S. Takashima, T. Tsuge, Y. Asakura, T. Uda and T. Sugiyama, ”Overshooting breakthrough curves formed in pressure swing adsorption process for hydrogen isotope separation,” Fusion Science and Technology, vol. 56, pp. 173-178, 2009.
[61] A. Golmakani, S. Fatemi, and J. Tamnanloo, ”CO2 capture from the tail gas of hydrogen purification unit by vacuum swing adsorption process, using SAPO-34,” Ind. Eng. Chem. Res., vol. 55, no. 1, pp. 334-350, 2016.
[62] Y. A. Cengel and M. A. Boles, Thermodynamics: An engineering approach, fifth edtion, New York: McGraw-Hill Inc., 2004.
[63] 李念祖, “利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗,” 碩士論文, 國立中央大學, 民國104年.
[64] 游欣敏, “變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估,” 碩士論文, 國立中央大學, 民國105年.
指導教授 周正堂(Cheng-tung Chou) 審核日期 2017-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明