參考文獻 |
[1] 台灣電力公司, “歷年發電量占比,” 23 11 2016. [線上]. Available:http://www.taipower.com.tw/content/new_info/new_info-c37.aspx?LinkID=13.
[2] EIA, ”International Energy Outlook, 2016,” 11 5 2016. [Online]. Available:http://www.eia.gov/outlooks/ieo/exec_summ.cfm.
[3] EIA, ”Annual Energy Outlook 2017,” 15 1 2017. [Online]. Available:https://www.eia.gov/outlooks/aeo/pdf/0383(2017).pdf.
[4] 行政院環境保護署, “2016年中華民國國家溫室氣體排放清冊報告,” 2016. [線上]. Available:http://unfccc.saveoursky.org.tw/2016nir/index.php.
[5] J.C. Abanades, B. Arias, A. Lyngfelt, T. Mattisson, D.E. Wiley, H. Lic, M.T. Ho,E. Mangano and S. Brandani, ”Emerging CO2 capture systems,” International Journal of Greenhouse Gas Control, vol. 40, pp. 126-166, 2015.
[6] H. Krutka and S. Sjostrom, P.E., ”Evaluation of solid sorbents as a retrofit technology for CO2 capture from coal-fired power plants final technical report,” DOE Report No. 05649FR01, 2011.
[7] D. M. Todd, ”Gas Turbine Improvements Enhance IGCC Viability,” 2000 Gasification Technologies Conference, San Francisco, CA, 2000.
[8] A. Agarwal, Advanced strategies for optimal design and operation of, Proquest, 2010.
[9] C. Skarstrom, ”Esso research and engineering company”. US Patent 2944627, 1960.
[10] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and Technology, Kluwer Academic Publishers, 1988.
[11] W. K. Choi, T. I. Kwon, Y. K. Yeo, H. Lee , H. K. Song and B. K. Na, “Optimal Operation of the Pressure Swing Adsorption (PSA) Process,” Chemical Engineering, pp. 617-623, 2003.
[12] R.T.Yang, ”Gas Seperation by Adsorption Process,” London: Imperial College Press, 1997.
[13] D. D. a. M. P. G. De, ”Process for separating a binary gaseous mixture by adsorption”. United States Patent 3,155,468, 1964.
[14] R. T. Yang, ”Gas seperation by adsorption process,” World Scientific, 1997.
[15] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, ”Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon,” Ind. Eng. Chem. Res., vol. 41, pp. 5498-5503, 2002.
[16] K. Chihara and M. Suzuki, ”Air drying by pressure swing adsorption,” J. Chem. Eng. Jpn., vol. 16, pp. 293-299, 1983.
[17] J. J. Collins, ”Air separation by adsorption”. United States Patent 4,026,680, 1975.
[18] Y.H. Kim, J.J. Kim, and C.H. Lee, ”Adsorptive Cyclic Purification Process for CO2 Mixtures Captured from Coal Power Plants,” American Institute of Chemical Engineers, vol. 63, pp. 3, 3 2017.
[19] Z. Liu,L. Wang,X. Kong,P. Li,J. Yu,A.E. Rodrigues, ”Onsite CO2 Capture from Flue Gas by an Adsorption Process in a Coal-Fired Power Plant,” Ind. Eng. Chem. Res., vol. 51, pp. 7355-7363, 2012.
[20] E. R. A. Fuderer, ”Selective adsorption process”. United States Patent 3,986,849, 1976.
[21] M. Yavary, H.A. Ebrahim and C. Falamaki, ”The effect of number of pressure equalization steps on the performance of pressure swing adsorption process,” Chemical Engineering and Processing, vol. 87, pp. 35–44, 2015.
[22] A.K. Rajagopalan1, A.M. Avila and A. Rajendran, ”Do adsorbent screening metrics predict process performance? Aprocess optimisation based study for post-combustion capture of CO2,” International Journal of Greenhouse Gas Control, vol. 46, pp. 76–85, 2016.
[23] J. Ling, P. Xiao, A. Ntiamoah, D. Xu, P. Webley and Y. Zhai, ”Strategies for CO2 capture from different CO2 emission sources by vacuum swing adsorption technology,” Chinese Journal of Chemical Engineering, vol. 24, pp. 460–467, 2016.
[24] M. Khurana and S. Farooq, ”Simulation and optimization of a 6-step dual-reflux VSA cycle for post-combustion CO2 capture,” Chemical Engineering Science, vol. 152, pp. 507–515, 2016.
[25] K.T. Leperi, R.Q. Snurr, and F.You, ”Optimization of Two-Stage Pressure/Vacuum Swing Adsorption with Variable Dehydration Level for Postcombustion Carbon Capture,” Ind. Eng. Chem. Res., vol. 55, pp. 3338−3350, 2016.
[26] D.Li, Y.Zhou, Y. Shen, W. Sun, Q. Fu, H. Yan and D. Zhang, ”Experiment and simulation for separating CO2/N2 by dual-reflux pressure swing adsorption process,” Chemical Engineering Journal, vol. 297, pp. 315–324, 2016.
[27] J. Ling, A. Ntiamoah, P. Xiao, P. A. Webley and Y. Zhai, ”Effects of feed gas concentration, temperature and process parameters on vacuum swing adsorption performance for CO2 capture,” Chemical Engineering Journal, vol. 265, pp. 47–57, 2015.
[28] O. Leal, C. Bolivar, C. Ovalles, J.J. Garcia and Y. Espidel, ”Reversible adsorption of carbon dioxide on amine surface-bonded silica gel,” Inorg. Chim. Acta, vol. 240, pp. 183–189, 1995.
[29] H.Y. Huang, R.T. Yang, D. Chinn and C.L. Munson, ”Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas,” Ind. Eng. Chem. Res., vol. 42, pp. 2427–2433, 2003.
[30] G.P. Knowles, J.V. Graham, S.W. Delaney and A.L. Chaffee, ”Aminopropylfunctionalized mesoporous silica as CO2 adsorbents,” Fuel Process Technol., vol. 86, pp. 1435–1448, 2005.
[31] G.P. Knowles, S.W. Delaney and A.L. Chaffee, ”Diethylenetriamine[propyl(silyl)]-functionalized(DT) mesoporous silicas as CO2 adsorbents,” Ind. Eng. Chem. Res., vol. 45, pp. 2626–2633, 2006.
[32] P.J.E. Harlick and A. Sayari, ”Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption,” Ind. Eng. Chem. Res., vol. 45, pp. 3248 – 3255, 2006.
[33] Y. Belmabkhout and A. Sayari, ”Effect of pore expansion and aminefunctionalization of mesoporous silica on CO2 adsorption over a wide range of conditions,” Adsorption, vol. 15, pp. 318–328, 2009.
[34] A. Sayari, M. Kruk, M. Jaroniec and I.L. Moudrakovski, ”New approaches to pore size engineering of mesoporous silicates,” Adv. Mater., vol. 10, pp. 1376–1379, 1998.
[35] A. Sayari, ”Unprecedented expansion of the pore size and volume of periodic mesoporous silica,” Angew. Chem. Int. Ed., vol. 112, pp. 3042–3044, 2000.
[36] P.J.E. Harlick and A. Sayari, ”Applications of pore-expanded mesoporous silicas. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance,” Ind. Eng. Chem. Res., vol. 46, pp. 446–458, 2007.
[37] A. Sayari and Y. Belmabkhout, ”Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor,” J. Am. Chem. Soc., vol. 132, pp. 6312–6314, 2010.
[38] N. Hiyoshi, K. Yogo and T. Yashima, ”Adsorption characteristics of carbon dioxide on organically functionalized SBA-15,” Micropor. Mesopor. Mater., vol. 84, pp. 357–365, 2005.
[39] S.N. Kim, W.J. Son, J.S. Choi and W.S. Ahn, ”CO2 adsorption using aminefunctionalized mesoporous silica prepared via anionic surfactant-mediated synthesis,” Micropor. Mesopor. Mater., vol. 115, pp. 497–503, 2008.
[40] C. Knofel, J. Descarpenteries, A. Benzaouia, V. Zelenak, S. Mornet, P.L. Llewellyn and V. Hornebecq, ”Functionalized micro-/mesoporous silica for the adsorption of carbon dioxide,” Micropor. Mesopor. Mater., vol. 99, pp. 79–85, 2007.
[41] L. Wang, L. Ma, A. Wang, Q. Liu and T. Zhang, ”CO2 adsorption on SBA-15 modified by aminosilane,” Chin. J. Catal., vol. 28, pp. 805–810, 2007.
[42] J. Wei, J. Shi, H. Pan, W. Zhao, Q. Ye and Y. Shi, ”Adsorption of carbon dioxide on organically functionalized SBA-16,” Micropor. Mesopor. Mater., vol. 116, pp. 394–399, 2008.
[43] V. Zelenak, D. Halamova, L. Gaberova, E. Bloch and P. Llewellyn, ”Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: effect of amine basicity on sorption properties,” Micropor. Mesopor. Mater., vol. 116, pp. 358–364, 2008.
[44] C. Knofel, C. Martin, V. Hornebecq and P.L. Llewellyn, ”Study of carbon dioxide adsorption on mesoporous aminopropylsilane-functionalized silica and titania combining microcalorimetry and in situ infrared spectroscopy,” J. Phys. Chem. C, vol. 113, pp. 21726–21734, 2009.
[45] C. Lu, F. Su, S.C. Hsu, W. Chen, H. Bai, J.F. Hwang and H.H. Lee, ”Thermodynamics and regeneration of CO2 adsorption on mesoporous spherical-silica particles,” Fuel Process. Technol., vol. 90, pp. 1543–1549, 2009.
[46] C.W. Jones, J.C. Hicks, D.J. Fauth and M. Gray, ”Structures for capturing CO2, methods of making the structures and methods of capturing CO2”. US Patent US2007/0149398, 2007.
[47] J.C. Hicks, J.D. Drese, D.J. Fauth, M.L. Gray, G. Qi and C.W. Jones, ”Designing adsorbents for CO2 capture from flue gas – hyperbranched aminosilicas capable of capturing CO2 reversibly,” J. Am. Chem. Soc., vol. 130, pp. 2902–2903, 2008.
[48] J.H. Drese, S. Choi, R.P. Lively, W.J. Koros, D.J. Fauth, M.L. Gray and C.W. Jones, ”Synthesis–structure–property relationships for hyperbranched aminosilica CO2 adsorbents,” Adv. Func. Mater., vol. 19, pp. 3821-3832, 2009.
[49] Y. Choe, K.J. Oh, S.S. Kim and S.W. Park, ”Adsorption of carbon dioxide onto BDA-CP-MS41,” Korean J. Chem. Eng., vol. 27, no. 3, pp. 962-969, 2010.
[50] C.G. Wu and T. Bein, ”Conducting polyaniline filaments in a mesoporous channel host,” Science, vol. 264, pp. 1757-1759, 1994.
[51] T. Takei, K. Yoshimura, Y. Yonesaki, N. Kumada and N. Kinomura, ”Preparation of polyaniline/mesoporous silica hybrid and its electrochemical properties,” Journal of Porous Materials, vol. 12, pp. 337-343, 2005.
[52] J. Stejskal and M. Trchova, ”Surface Polymerization of Aniline on Silica Gel,” Langmuir, vol. 19, pp. 3013-3018, 2003.
[53] M. Gonza ´lez, B.G. Soares, M. Magioli , J.A. Marins and J. Rieumont, ”Facile method for synthesis of polyaniline/silica hybrid composites by simultaneous sol–gel process and ”in situ” polymerization of aniline,” J Sol-Gel Sci Technol, vol. 63, pp. 373–381, 2012.
[54] P.Yadav, J.S.Chauhan, P.Kannojia, N. K Jain and V.Tomar, ”A Review: On Scale-Up Factor Determination of Rapid Mixer Granulator,” Der Pharmacia Lettre, vol. 2, no. 5, pp. 23-38, 2010.
[55] M. Aslan, D. Weingarth,N.. Jackel, J.S. Atchison, I. Grobelsek and V. Presser, ”Polyvinylpyrrolidone as binder for castable supercapacitor electrodes with high electrochemical performance in organic electrolytes,” J. of Power Sources, vol. 266, pp. 374-383, 2014.
[56] A. Sharafian, K. Fayazmanesh, C. McCague and M. Bahrami, ”Thermal conductivity and contact resistance of mesoporous silica gel adsorbents bound with polyvinylpyrrolidone in contact with a metallic substrate for adsorption cooling system applications,” Int′l J. of Heat and Mass Transfer, vol. 79, pp. 64–71, 2014.
[57] H. Kozuka, A. Yamano, M. Fujita and H. Uchiyama, ”Aqueous dip-coating route to dense and porous silica thin films using silica nanocolloids with an aid of polyvinylpyrrolidone,” J Sol-Gel Sci Technol, vol. 61, pp. 81-389, 2012.
[58] Y. Xu, B. Zhang, W.H. Fan, D. Wu and Y. H. Sun, ”Sol–gel broadband anti-reflective single-layer silica films with high laser damage threshold,” Thin Solid Films, vol. 440, pp. 180-183, 2003.
[59] 藍啟仁, “苯胺基官能基固著矽膠固體吸收劑之製備方法”. 中華民國 專利: I409220, 2013.
[60] K. Kotoh, M.Tanaka, T. Sakamoto, S. Takashima, T. Tsuge, Y. Asakura, T. Uda and T. Sugiyama, ”Overshooting breakthrough curves formed in pressure swing adsorption process for hydrogen isotope separation,” Fusion Science and Technology, vol. 56, pp. 173-178, 2009.
[61] A. Golmakani, S. Fatemi, and J. Tamnanloo, ”CO2 capture from the tail gas of hydrogen purification unit by vacuum swing adsorption process, using SAPO-34,” Ind. Eng. Chem. Res., vol. 55, no. 1, pp. 334-350, 2016.
[62] Y. A. Cengel and M. A. Boles, Thermodynamics: An engineering approach, fifth edtion, New York: McGraw-Hill Inc., 2004.
[63] 李念祖, “利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗,” 碩士論文, 國立中央大學, 民國104年.
[64] 游欣敏, “變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估,” 碩士論文, 國立中央大學, 民國105年. |