參考文獻 |
1. Ye, B. L. a. Q., Antifouling Surfaces of Self-assembled Thin Layer. 2015.
2. Donlan, R. M., Biofilm Formation: A Clinically Relevant Microbiological Process. Clinical Infectious Diseases 2001, 33 (8), 1387-1392.
3. Van Houdt, R.; Michiels, C. W., Role of bacterial cell surface structures in Escherichia coli biofilm formation. Research in microbiology 2005, 156 (5-6), 626-33.
4. Runnan Zhang, Y. L., ab Mingrui He, Yanlei Su,ab Xueting Zhao,; Jiang, M. E. a. Z., Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem. Soc. Rev 2016, 45, 5888--5924.
5. Whitesides, G. M., A Survey of Structure−Property Relationships of Surfaces that Resist the Adsorption of Protein. Langmuir : the ACS journal of surfaces and colloids 2001, 17 (18), pp 5605–5620.
6. Chen, S.; Li, L.; Zhao, C.; Zheng, J., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer 2010, 51 (23), 5283-5293.
7. (a) Yeh, S. B.; Chen, C. S.; Chen, W. Y.; Huang, C. J., Modification of silicone elastomer with zwitterionic silane for durable antifouling properties. Langmuir : the ACS journal of surfaces and colloids 2014, 30 (38), 11386-93; (b) JOHNSON, D., On the Aging of Oxygen Plasma-Treated Polydimethylsiloxane Surfaces. Journal of Colloid and lnterface Science 1989, 137.
8. Pombo Garcia, K.; Zarschler, K.; Barbaro, L.; Barreto, J. A.; O′Malley, W.; Spiccia, L.; Stephan, H.; Graham, B., Zwitterionic-coated "stealth" nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 2014, 10 (13), 2516-29.
9. Jiang, S., Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. NATURE CHEMISTRY 2012, 4.
10. Lu, C.; Liu, N.; Gu, X.; Li, B.; Wang, Y.; Gao, H.; Ma, J.; Wu, G., Synthesis and characterization of biocompatible zwitterionic sulfobetaine polypeptides and their resistance to protein adsorption. Journal of Polymer Research 2014, 21 (11).
11. RF, Z., Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 1997, 15 (89), 1121-1132.
12. Schlenoff, J. B., Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir : the ACS journal of surfaces and colloids 2014, 30 (32), 9625-36.
13. Whitesides, G. M., Zwitterionic SAMs that Resist Nonspecific Adsorption of
Protein from Aqueous Buffer. Langmuir : the ACS journal of surfaces and colloids 2001, 17, 2841-2850.
14. Jiang, S., Highly Protein-Resistant Coatings from Well-Defined Diblock
Copolymers Containing Sulfobetaines. Langmuir : the ACS journal of surfaces and colloids 2006, 22, 2222-2226.
15. Sin, M.-C.; Chen, S.-H.; Chang, Y., Hemocompatibility of zwitterionic interfaces and membranes. Polymer Journal 2014, 46 (8), 436-443.
16. Estephan, Z. G.; Schlenoff, P. S.; Schlenoff, J. B., Zwitteration as an alternative to PEGylation. Langmuir : the ACS journal of surfaces and colloids 2011, 27 (11), 6794-800.
17. (a) Whitesides, G. M., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103-1169; (b) Jadhav, S. A., Self-assembled monolayers (SAMs) of carboxylic acids: an overview. Central European Journal of Chemistry 2011, 9 (3), 369-378; (c) Jiang, S., Strong Resistance of Phosphorylcholine Self-Assembled Monolayers to Protein Adsorption: Insights into Nonfouling Properties of Zwitterionic Materials. J. Am. Chem. Soc. 2005, 127, 14473-14478.
18. Estephan, Z. G.; Jaber, J. A.; Schlenoff, J. B., Zwitterion-stabilized silica nanoparticles: toward nonstick nano. Langmuir : the ACS journal of surfaces and colloids 2010, 26 (22), 16884-9.
19. Hu, F.; Chen, K.; Xu, H.; Gu, H., Functional short-chain zwitterion coated silica nanoparticles with antifouling property in protein solutions. Colloids and surfaces. B, Biointerfaces 2015, 126, 251-6.
20. Witucki, G. L., A Silane Primer: Chemistry andApplications of AIkoxy Silanes. 1992.
21. QIAO Bing, G. H., WANG Tingjie, JIN Yong, Process and mechanism of surface modification of silica with silane coupling agent APTS. CIESC Journal 2014, 65.
22. Díaz-Benito, B.; Velasco, F.; Martínez, F. J.; Encinas, N., Hydrolysis study of bis-1,2-(triethoxysilyl)ethane silane by NMR. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 369 (1-3), 53-56.
23. Shlyakhtenko, L. S.; Gall, A. A.; Filonov, A.; Cerovac, Z.; Lushnikov, A.; Lyubchenko, Y. L., Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy 2003, 97 (1-4), 279-287.
24. Balas, M. V.-R. a. F., Silica Materials for Medical Applications. The Open Biomedical Engineering Journal 2008, 2, 1-9.
25. Tsai, M.-F.; Lee, Y.-D.; Chen, K.-N., NMR spectroscopic studies of dimethyldiethoxy silane hydrolysis and polysiloxane conversion. Journal of Applied Polymer Science 2002, 86 (2), 468-477.
26. Zhu, M.; Lerum, M. Z.; Chen, W., How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica. Langmuir : the ACS journal of surfaces and colloids 2012, 28 (1), 416-23.
27. Dumitriu, A. M.-C.; Cazacu, M.; Shova, S.; Turta, C.; Simionescu, B. C., Synthesis and structural characterization of 1-(3-aminopropyl)silatrane and some new derivatives. Polyhedron 2012, 33 (1), 119-126.
28. (a) Michael W. Schmidt, T. L. W., t and MarkS. Gordon, Structural Trends in Silicon Atranes. J. Am. Chem. Soc. 1995, 117, 7480-7486; (b) Puri, J. K.; Singh, R.; Chahal, V. K., Silatranes: a review on their synthesis, structure, reactivity and applications. Chemical Society reviews 2011, 40 (3), 1791-840.
29. Frye, Triptych-siloxazolidines: pentacoordinate bridgehead silanes resulting from transannular interaction of nitrogen and silicon. J Am Chem SOC 1961 (93), 996.
30. voronkov, Biochemistry of silicon and related problems. 1978.
31. Voronkov, KINETICS OF HYDROLYSIS OF SILATRANES IN A NEUTRAL MEDIL. 1985.
32. Tseng, Y. T.; Lu, H. Y.; Li, J. R.; Tung, W. J.; Chen, W. H.; Chau, L. K., Facile Functionalization of Polymer Surfaces in Aqueous and Polar Organic Solvents via 3-Mercaptopropylsilatrane. ACS applied materials & interfaces 2016, 8 (49), 34159-34169.
33. Kim, D.; Zuidema, J. M.; Kang, J.; Pan, Y.; Wu, L.; Warther, D.; Arkles, B.; Sailor, M. J., Facile Surface Modification of Hydroxylated Silicon Nanostructures Using Heterocyclic Silanes. J Am Chem Soc 2016, 138 (46), 15106-15109.
34. Huang, K.-W.; Hsieh, C.-W.; Kan, H.-C.; Hsieh, M.-L.; Hsieh, S.; Chau, L.-K.; Cheng, T.-E.; Lin, W.-T., Improved performance of aminopropylsilatrane over aminopropyltriethoxysilane as a linker for nanoparticle-based plasmon resonance sensors. Sensors and Actuators B: Chemical 2012, 163 (1), 207-215.
35. Wenwen Zhao, Q. Y., Haiyuan Hu,aXiaolong Wang and Feng Zhou, Grafting zwitterionic polymer brushes via electrochemical surface-initiated atomic-transfer
radical polymerization for anti-fouling applications. J. Mater. Chem. B, 2014, 2, 5352–5357.
36. Schott, P. G. a. H., Fourier-Transform Midinfrared Spectroscopy for Analysis and Screening of Liquid Protein Formulations. BioProcess International 2006.
37. Huang, C.-J.; Chang, Y.-C., In Situ Surface Tailoring with Zwitterionic Carboxybetaine Moieties on Self-Assembled Thin Film for Antifouling Biointerfaces. Materials 2013, 7 (1), 130-142.
38. Alothman, Z., A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5 (12), 2874-2902.
39. Schubert, U., Sol–Gel Chemistry and Methods,2012. |