參考文獻 |
[1] A. Karma, “Physics of cardiac arrhythmogenesis,” Annual Review of Condensed Matter Physics, vol. 4, no. 1, pp. 313–337, 2013. doi: 10 . 1146 / annurev - conmatphys-020911-125112. [Online]. Available: https://doi.org/10. 1146/annurev-conmatphys-020911-125112.
[2] J. G. Restrepo and A. Karma, “Spatiotemporal intracellular calcium dynamics during cardiac alternans,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 19, no. 3, p. 037 115, Sep. 1, 2009, issn: 1054-1500. doi: 10.1063/1.3207835. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.3207835.
[3] E. Alvarez-Lacalle, B. Echebarria, J. Spalding, and Y. Shiferaw, “Calcium alternans is due to an order-disorder phase transition in cardiac cells,” Physical Review Letters, vol. 114, no. 10, p. 108 101, Mar. 12, 2015. doi: 10.1103/PhysRevLett.114.108101. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.114.108101.
[4] A. Petrie and X. Zhao, “Estimating eigenvalues of dynamical systems from time series with applications to predicting cardiac alternans,” Proc. R. Soc. A, rspa20120098, Jul. 4, 2012, issn: 1364-5021, 1471-2946. doi: 10.1098/rspa.2012.0098. [Online]. Available: http://rspa.royalsocietypublishing.org/content/early/2012/07/03/rspa.2012.0098 (visited on 06/22/2017).
[5] Z. Qu and J. N. Weiss, “Dynamics and cardiac arrhythmias,” Journal of Cardiovascular Electrophysiology, vol. 17, no. 9, pp. 1042–1049, Sep. 1, 2006, issn: 1540-8167. doi: 10.1111/j.1540- 8167.2006.00567.x. [Online]. Available: http : / / onlinelibrary . wiley . com / doi / 10 . 1111 / j . 1540 - 8167.2006.00567.x/abstract.
[6] S. S. Kalb, H. M. Dobrovolny, E. G. Tolkacheva, S. F. Idriss, W. Krassowska, and D. J. Gauthier, “The restitution portrait:” Journal of Cardiovascular Electrophysiology, vol. 15, no. 6, pp. 698–709, Jun. 1, 2004, issn: 1540-8167. doi: 10.1046/j.1540-8167.2004.03550.x. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1046/j.1540-8167.2004.03550.x/abstract.
[7] Z. Qu, Y. Xie, A. Garfinkel, and J. N. Weiss, “T-wave alternans and arrhythmogenesis in cardiac diseases,” Frontiers in Physiology, vol. 1, Nov. 29, 2010, issn: 1664-042X. doi: 10.3389/fphys.2010.00154. [Online]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3028203/.
[8] S. H. Strogatz, Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering, 1 edition. Cambridge, Mass: Westview Press, Jan. 19, 2001, 512 pp., isbn: 978-0-7382-0453-6.
[9] K. Kaneko and T. Yanagita, “Coupled maps,” Scholarpedia, vol. 9, no. 5, p. 4085, May 12, 2014, issn: 1941-6016. doi: 10.4249/scholarpedia.4085. [Online]. Available: http : / / www . scholarpedia . org / article / Coupled _ maps (visited on 06/25/2017).
[10] S. Sridhar, D.-M. Le, Y.-C. Mi, S. Sinha, P.-Y. Lai, and C. K. Chan, “Suppression of cardiac alternans by alternating-period-feedback stimulations,” Physical Review E, vol. 87, no. 4, p. 042 712, Apr. 15, 2013. doi: 10.1103/PhysRevE.87.042712. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.87.042712.
[11] S.-N. Liang, D.-M. Le, P.-Y. Lai, and C. K. Chan, “Ionic characteristics in cardiac alternans suppression usingT ± feedback control,” EPL (Europhysics Letters),
vol. 115, no. 4, p. 48 001, 2016, issn: 0295-5075. doi: 10.1209/0295- 5075/115/48001. [Online]. Available: http://stacks.iop.org/0295- 5075/115/i=4/a=48001.
[12] D.-M. Le, Y. T. Lin, Y. H. Yang, P.-Y. Lai, and C. K. Chan, “Cardiac alternans reduction by chaotic attractors inT ± feedback control,” EPL (Europhysics Letters), vol. 117, no. 5, p. 50 001, 2017, issn: 0295-5075. doi: 10.1209/0295-5075/117/50001. [Online]. Available: http://stacks.iop.org/0295-5075/117/i=5/a=50001.
[13] J. M. Pastore, S. D. Girouard, K. R. Laurita, F. G. Akar, and D. S. Rosenbaum, “Mechanism linking t-wave alternans to the genesis of cardiac fibrillation,” Circulation, vol. 99, no. 10, pp. 1385–1394, Mar. 16, 1999, issn: 0009-7322, 1524-4539. doi: 10.1161/01.CIR.99.10.1385. [Online]. Available: http://circ.ahajournals.org/content/99/10/1385 (visited on 06/22/2017).
[14] Z. Qu, A. Garfinkel, P.-S. Chen, and J. N. Weiss, “Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue,” Circulation, vol. 102, no. 14, pp. 1664–1670, Oct. 3, 2000, issn: 0009-7322, 1524-4539. doi: 10.1161/01.CIR.102.14.1664. [Online]. Available: http://circ.ahajournals.org/content/102/14/1664 (visited on 06/28/2017).
[15] M. A. Watanabe, F. H. Fenton, S. J. Evans, H. M. Hastings, and A. Karma, “Mechanisms for discordant alternans,” Journal of Cardiovascular Electrophysiology, vol. 12, no. 2, pp. 196–206, Feb. 1, 2001, issn: 1540-8167. doi: 10.1046/j.1540-8167.2001.00196.x. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1046/j.1540-8167.2001.00196.x/abstract.
[16] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’networks,” Nature, vol. 393, no. 6684, pp. 440–442, Jun. 4, 1998, issn: 0028-0836. doi: 10.1038 / 30918. [Online]. Available: https : / / www . nature . com / nature / journal/v393/n6684/full/393440a0.html (visited on 06/27/2017).
[17] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509–512, Oct. 15, 1999, issn: 0036-8075, 1095-9203. doi: 10.1126/science.286.5439.509. [Online]. Available: http://science.sciencemag.org/content/286/5439/509 (visited on 06/27/2017).
[18] A. L. Lloyd and R. M. May, “How viruses spread among computers and people,” Science, vol. 292, no. 5520, pp. 1316–1317, May 18, 2001, issn: 0036-8075, 1095-9203. doi: 10 . 1126 / science . 1061076. [Online]. Available: http : / / science . sciencemag . org / content / 292 / 5520 / 1316 (visited on 06/27/2017).
[19] R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free networks,” Physical Review Letters, vol. 86, no. 14, pp. 3200–3203, Apr. 2, 2001. doi: 10.1103/PhysRevLett.86.3200. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.86.3200. |