博碩士論文 104522103 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.221.83.34
姓名 李佳軒(Jia-Xuan Lee)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 應用大數據分析提供與試卷相關之教學影片推薦服務
(Applying Big Data Analytics to Provide a Test Related to Digital Teaching Videos Recommendation Service)
相關論文
★ 應用智慧分類法提升文章發佈效率於一企業之知識分享平台★ 家庭智能管控之研究與實作
★ 開放式監控影像管理系統之搜尋機制設計及驗證★ 資料探勘應用於呆滯料預警機制之建立
★ 探討問題解決模式下的學習行為分析★ 資訊系統與電子簽核流程之總管理資訊系統
★ 製造執行系統應用於半導體機台停機通知分析處理★ Apple Pay支付於iOS平台上之研究與實作
★ 應用集群分析探究學習模式對學習成效之影響★ 應用序列探勘分析影片瀏覽模式對學習成效的影響
★ 一個以服務品質為基礎的網際服務選擇最佳化方法★ 維基百科知識推薦系統對於使用e-Portfolio的學習者滿意度調查
★ 學生的學習動機、網路自我效能與系統滿意度之探討-以e-Portfolio為例★ 藉由在第二人生內使用自動對話代理人來改善英文學習成效
★ 合作式資訊搜尋對於學生個人網路搜尋能力與策略之影響★ 數位註記對學習者在線上學習環境中反思等級之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於科技的普及與開放教育資源 (Open Educational Resources, OER)平臺的建立,教學者可任意使用OER平臺內的資源製作課程或是學習者可任意選擇所需的教學資源作使用,OER平臺除了提供教學資源外,許多OER平臺也提供線上測驗的服務,根據文獻,學習者利用測驗結果作學習,當學習者自行搜尋則會面臨OER平臺常有的資訊過載的問題。
本研究提出利用關聯規則建立與試卷相關之教學影片服務,透過分析試卷被使用的時機結合關聯規則建立知識架構內概念特徵集,將試卷與概念特徵集相似度比對後得到分類結果,與教學影片產生關聯性,將推薦結果與高成就學習者觀看影片清單結合,給予學習者最佳化後的教學影片推薦清單,來減少資訊過載的問題並讓學習者學習高成就學生學習模式來提升學習者學習成效。
摘要(英)
Due to the establishment of the Open Educational Resources (OER) platform, the instructor can use the educational resources in the OER platform or the learner can arbitrarily select the required teaching resources for use. In addition to providing the OER platform educational resources, many OER platforms also provide online quiz services, according to the literature, learners use the results of the test for learning. When the learners has finished the test, they will face overloading information problem which always happens in the OER platform.
This paper proposes of the use of the association rules to establish test related to digital teaching videos recommendation service. By analyzing the timing of the use of the test, the conceptual feature set of the knowledge structure is established, and the similarity between the tests and the conceptual feature sets is compared with the classfiaction results. The results of the presentation are combined with the list of highly viewed learners′ videos, giving learners an optimized list of recommendation to reduce the problem of overloading information and allowing learners to learn high-level student learning patterns to improve learning effect
關鍵字(中) ★ 開放教育資源
★ 推薦系統
★ 關聯規則
關鍵字(英)
論文目次
摘要 i
ABSTRACT ii
圖目錄 v
表格目錄 vi
一、 緒論 1
1.1 研究背景與動機 1
1.2 研究限制 3
二、 文獻探討 4
2.1 開放教育資源(OER)的現況 4
2.2 推薦系統 5
三、 系統設計 7
3.1系統開發環境與工具 7
3.1.1 開發環境-資料收集 7
3.1.2 開發環境-資料儲存 8
3.1.3 開發環境-資訊分析與萃取 9
3.1.4 開發環境-資訊應用 9
3.2資料集 10
3.2.1 關聯式資料表 11
3.2.2 使用歷程 14
3.2.3 知識架構 15
3.2.4 數學名詞 16
3.3系統架構 16
3.3.1 資料收集 18
3.3.2 資料儲存 20
3.3.3 資訊萃取與分析 20
3.3.4 資訊應用 25
四、 實驗設計 27
五、 討論與結果 29
六、 未來研究 29
參考文獻 31
參考文獻
Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, 17(6), 734-749.
Baraniuk, R. G. (2008). Challenges and opportunities for the open education movement: A Connexions case study. Opening up education: The collective advancement of education through open technology, open content, and open knowledge, 229-246.
Beutel, A., Chi, E. H., Cheng, Z., Pham, H., & Anderson, J. (2017, April). Beyond Globally Optimal: Focused Learning for Improved Recommendations. In Proceedings of the 26th International Conference on World Wide Web (pp. 203-212). International World Wide Web Conferences Steering Committee.
Bloom, B. S. (1976). Human characteristics and school learning. McGraw-Hill.
Guskey, T. R., & Gates, S. L. (1986). Synthesis of research on the effects of mastery learning in elementary and secondary classrooms. Educational Leadership, 43(8), 73-80.
Clements, K. I., & Pawlowski, J. M. (2012). User‐oriented quality for OER: Understanding teachers′ views on re‐use, quality, and trust. Journal of Computer Assisted Learning, 28(1), 4-14.
Chen, C. M., Lee, H. M., & Chen, Y. H. (2005). Personalized e-learning system using item response theory. Computers & Education, 44(3), 237-255.
Ruiz-Iniesta, A., Jiménez-Díaz, G., & Gómez-Albarrán, M. (2014). A semantically enriched context-aware OER recommendation strategy and its application to a computer science OER repository. IEEE Transactions on Education, 57(4), 255-260.
Cho, Y. H., Kim, J. K., & Kim, S. H. (2002). A personalized recommender system based on web usage mining and decision tree induction. Expert systems with Applications, 23(3), 329-342.
Downes, S. (2007). Models for sustainable open educational resources. Interdisciplinary Journal of E-Learning and Learning Objects, 3(1), 29-44.
Khribi, M. K., Jemni, M., & Nasraoui, O. (2008, July). Automatic recommendations for e-learning personalization based on web usage mining techniques and information retrieval. In Advanced Learning Technologies, 2008. ICALT′08. Eighth IEEE International Conference on (pp. 241-245). IEEE.
Lin, W., Alvarez, S. A., & Ruiz, C. (2002). Efficient adaptive-support association rule mining for recommender systems. Data mining and knowledge discovery, 6(1), 83-105.
Sicilia, M. Á., García-Barriocanal, E., Sánchez-Alonso, S., & Cechinel, C. (2010). Exploring user-based recommender results in large learning object repositories: the case of MERLOT. Procedia Computer Science, 1(2), 2859-2864.
Truong, H. M. (2016). Integrating learning styles and adaptive e-learning system: Current developments, problems and opportunities. Computers in Human Behavior, 55, 1185-1193.
Wu, W., Zhang, B., & Ostendorf, M. (2010, June). Automatic generation of personalized annotation tags for twitter users. In Human language technologies: The 2010 annual conference of the North American chapter of the association for computational linguistics (pp. 689-692). Association for Computational Linguistics.
Yang, T. C., Hwang, G. J., Yang, S. J., & Hwang, G. H. (2015). A Two-Tier Test-based Approach to Improving Students′ Computer-Programming Skills in a Web-Based Learning Environment. Educational Technology & Society, 18(1), 198-210.
Yuan, L., MacNeill, S., & Kraan, W. G. (2008). Open Educational Resources-Opportunities and challenges for higher education.
Zaíane, O. R. (2002, December). Building a recommender agent for e-learning systems. In Computers in education, 2002. proceedings. international conference on (pp. 55-59). IEEE.
指導教授 楊鎮華 審核日期 2017-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明