博碩士論文 104522011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.137.210.133
姓名 游孟航(Meng-Hang You)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於樣本學習自動合成創作卡通圖像
(Automatic Cartoon Image Creation Through Learning from Examples)
相關論文
★ 影片指定對象臉部置換系統★ 以單一攝影機實現單指虛擬鍵盤之功能
★ 基於視覺的手寫軌跡注音符號組合辨識系統★ 利用動態貝氏網路在空照影像中進行車輛偵測
★ 以視訊為基礎之手寫簽名認證★ 使用膚色與陰影機率高斯混合模型之移動膚色區域偵測
★ 影像中賦予信任等級的群眾切割★ 航空監控影像之區域切割與分類
★ 在群體人數估計應用中使用不同特徵與回歸方法之分析比較★ 以視覺為基礎之強韌多指尖偵測與人機介面應用
★ 在夜間受雨滴汙染鏡頭所拍攝的影片下之車流量估計★ 影像特徵點匹配應用於景點影像檢索
★ 自動感興趣區域切割及遠距交通影像中的軌跡分析★ 基於回歸模型與利用全天空影像特徵和歷史資訊之短期日射量預測
★ Analysis of the Performance of Different Classifiers for Cloud Detection Application★ 全天空影像之雲追蹤與太陽遮蔽預測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著近年來的技術發展,在電腦科學領域中使用機器學習成為了廣泛討論的議題。透過的對訓練資料擷取特徵學習,使用機器自動創建的技術在許多領域蓬勃發展,例如:文學、工業設計、音樂、圖像等。
本篇論文關注於自動創作生成卡通圖像,基於輸入訓練圖集的非監督式合成創作系統。創作圖像這類研究,有研究使用深度學習網路對輸入圖片進行分析,後依照使用者的設定改變風格,或是創作出新的圖像。然而,使用深度學習網路的設備價格較高,取得不易,且運算時間長。
本篇論文所提出的系統成本較低且運算快,使用非監督式學習的方式,擷取輸入訓練圖集的區域部位(Region)特徵來合成創作。我們使用圖像切割得方式取得輸入訓練圖集的區域部位,計算部位自身的特徵,並對每張輸入圖片建立一有向連通圖描述區域部位間的鄰近相連關係(Region Relationship Graph)。再依前述兩種特性對所有區域做分群,分群結束後針對統計出的各群特性對分群結果做優化修正(Clustering Refinement),最後依分群結果合成創作出新的圖像。
由實驗結果顯示,本篇論文所提出的系統能有效地對輸入訓練圖集有效的切割區域,並能在Clustering Refinement後提供良好的分群結果。由於創造的圖像結果是主觀的,經過我們的評分實驗結果顯示,系統創作出來的圖像是有普通標準以上的分數。
摘要(英)
During the past few years, the use of machine learning in the field of computer science has become a subject of extensive discussion. Through learning features from training data, creative intelligence that gives machines ability to creation has been developed in many areas such as literature, industrial design, music, and images.
This thesis focuses on automatic creation of cartoon images, based on the input training examples. Unsupervised learning methods are applied to analyze the input training images. We use image segmentation to obtain regions. Then characteristics of regions are calculated. For each input image, we establish a connected region relationship graph to describe the relationship between the adjacent regions. All the regions from example images are clustered according to their characteristics. After clustering, the clustering refinement step is designed using the statistics of each cluster. Finally, the new images are created according to the results of clustering.
The experimental results show that the system proposed in this thesis can effectively segment the area of the training examples and provide good clustering results after clustering refinement. As the result of the creation of the image is subjective, we perform subjective tests on different users to score our creation results. The results are satisfying and the proposed system is computationally fast.
關鍵字(中) ★ 自動創作
★ 非監督式學習
★ k-means++
關鍵字(英) ★ creative intelligence
★ Unsupervised Learning
★ k-means++
論文目次
摘要 ii
ABSTRACT vi
致謝 vii
目錄 viii
圖目錄 x
表目錄 xiii
第一章 緒論 1
1.1 研究動機 1
1.2 相關文獻 2
1.3 系統流程論文架構 2
1.3.1 系統流程圖 4
第二章 部位區域擷取 5
2.1 Statistical Region Merging (SRM) 5
2.2 黑色描邊去除 8
2.2.1 Laplacian Edge Detection AND Contour Flood Fill 8
2.3 連通分量標記 10
第三章 特徵擷取 13
3.1 Region Relationship Graph 13
3.1.1 Create a Directed Graph 14
3.1.2 Merge Subgraphs 16
3.2 Region Feature Extraction 18
3.2.1 Vertex Degree 19
3.2.2 Edge Angle 20
3.2.3 Edge to Vertex Index 20
3.2.4 Region Size 21
3.2.5 Contour Distance histogram 21
3.2.6 Region Shape 23
3.2.7 CenterPoint y 24
第四章 分群創作 25
4.1 k-means ++ Clustering 25
4.1.1 特徵向量標準差正規化 28
4.2 Clustering Refinement 29
4.3 組合創作 31
第五章 實驗結果與討論 34
5.1 實驗環境與實驗資料集 34
5.2 k-means與k-means++ 分群結果比較 36
5.3 Clustering Refinement 分群結果比較 38
5.4 k值選用比較 40
5.5 Region Relationship Graph特徵分群結果比較 42
5.6 創造評分系統 43
5.7 系統適應性比較 45
第六章 結論與未來工作 47
參考文獻 49
參考文獻 [1] Liu, Chien-Hung, and Chuan-Kang Ting. 2015. “Music Pattern Mining for Chromosome Representation in Evolutionary Composition.” In IEEE Congress on Evolutionary Computation (CEC 2015), Sendai, Japan, 25–28 May 2015, 2145–2152.
[2] Mordvintsev, Alexander, Olah, Christopher and Tyka, Mike, “DeepDream - a code example for visualizing Neural Networks”; Google Research (2015)
[3] Mordvintsev, Alexander, Olah, Christopher and Tyka, Mike,”Inceptionism: Going Deeper into Neural Networks”; Google Research (2015)
[4] Mordvintsev, Alexander, Olah, Christopher and Tyka, Mike, ”Inceptionism: Going Deeper into Neural Networks”; Google Research (2015)
[5] Leon A. Gatys, Alexander S. Ecker and Matthias Bethge,” A Neural Algorithm of Artistic Style”; arXiv preprint arXiv:1508.06576 (2015)
[6] Leon A. Gatys, Alexander S. Ecker and Matthias Bethge,” Image Style Transfer Using Convolutional Neural Networks”; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2414-2423
[7] Szegedy hristian, Liu Wei, Jia Yangqing, Sermanet Pierre, Reed Scott, Anguelov Dragomir, Erhan Dumitru, Vanhoucke Vincent and Rabinovich Andrew, “Going Deeper with Convolutions”; Computing Research Repository. arXiv:1409.4842 (2014)
[8] R. Kimmel and A.M. Bruckstein,”On regularized Laplacian zero crossings and other optimal edge integrators”; International Journal of Computer Vision, 53(3) pages 225–243(2003)
[9] Nock, R. and F. Nielsen, Statistical region merging. IEEE Transactions on pattern analysis and machine intelligence, 2004. 26(11): p. 1452-1458.
[10] Samet, H.; Tamminen, M. (1988). "Efficient Component Labeling of Images of Arbitrary Dimension Represented by Linear Bintrees". IEEE Transactions on Pattern Analysis and Machine Intelligence.
[11] Michael B. Dillencourt; Hannan Samet; Markku Tamminen (1992). "A general approach to connected-component labeling for arbitrary image representations". Journal of the ACM.
[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein], Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7. Section 22.2: Breadth-first search, pp. 531–539.
[13] MacQueen, J. B. (1967). Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. 1. University of California Press. pp. 281–297.
[14] Arthur, D.; Vassilvitskii, S. (2007). "k-means++: the advantages of careful seeding" (PDF). Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics Philadelphia, PA, USA. pp. 1027–1035.
[15] Canny, J., A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, 1986(6): p. 679-698.
[16] Dan Motzenbecker and Kyle Phillips, “Google AutoDraw”, https://www.autodraw.com/
[17] Wei-Ta Chu and Chia-Hsiang Yu, "Optimized Speech Balloon Placement for Automatic Comics Generation," Proceedings of ACM International Workshop on Interactive Multimedia on Mobile and Portable Devices, pp. 1-6, 2013.
指導教授 鄭旭詠(Hsu-Yung Cheng) 審核日期 2017-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明