![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:8 、訪客IP:3.128.205.62
姓名 劉冠廷(Kuan-Ting Liu) 查詢紙本館藏 畢業系所 光電科學與工程學系 論文名稱 以溶膠凝膠法製鍍超親水硬質膜於塑膠基板上
(Depositing superhydrophilic hybrid hard coating on polyethylene terephthalate (PET) substrate using modified sol-gel process)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 硬質薄膜通常應用在塑膠基材上作為保護層,為基材延長使用壽命。而薄膜被廣泛地透過溶膠凝膠法製造。本研究中,以PET軟性基材作為基底,具有超親水性的雙層結構薄膜被成功開發出來。雙層薄膜結構中,底層為硬質薄膜,是利用含壓克力官能基的二氧化矽溶液(Modified silica sol.)、戊二醇四丙烯酸酯(PETTA)、光起始劑(DC 1173)混合後塗佈而成,其固化後的交聯網狀結構為薄膜整體提供了優異的機械性質;上層為超親水薄膜,是使用四乙氧基矽烷(TEOS)在鹼催化環境下形成的超親水奈米顆粒,在薄膜表面作表面改質,提高薄膜表面能,以致於達到防霧效果。
本實驗利用UV / VIS分光光譜儀,原子力顯微鏡(AFM),水接觸角量測儀,鉛筆硬度計,附著力測驗、耐磨測驗,防霧測驗,浸泡試驗以及耐久性試驗等各種方法來檢測薄膜各方面性能。由實驗結果可知,交聯劑的添加量會直接影響到薄膜的硬度以及親水性質。特別的是,隨著交聯劑的添加,薄膜的硬度會顯著提高,原因是交聯劑具有多個壓克力反應官能團,薄膜固化後會擁有緻密的結構,然而,由於交聯劑的高交聯密度性質,會導致薄膜在固化後表面形成全面性的皺褶結構,令薄膜表面表現不出超親水性質。
實驗結果顯示,超親水硬質薄膜不僅具有優異的硬度(4H),且具有良好的光學性質(平均穿透率89.83%,400-700nm)及防霧性質(100°C熱水上5秒不起霧),因此可應用於於許多產業上。摘要(英)
Superhydrophilic hard coatings are frequently applied on plastic substrate as a protective layer. The coatings have been recently widely fabricated by sol-gel processes. Here, a bilayer hard coatings with superhydrophilic performance was developed on polyethylene terephthalate (PET) substrate using modified sol-gel processes. The bottom coating, UV curable hybrid hard coating, is an organic/inorganic composite comprising surface-modified silica with acrylic groups embedded in pentaerythritol tetraacrylate (PETTA) cross-linked network to provide a mechanical support. The upper coating was modified using superhydrophilic nanoparticles, which synthesized by tetraethoxysilane (TEOS) in base catalyst. Various methods, e.g., UV/VIS spectrophotometer, atomic force microscopy (AFM), water contact angle, pencil hardness test, adhesion test and abrasion-resistant test, anti-fogging test, soaking test, durability test were employed to characterize the film performance. The results indicated that the amount of PETTA was deeply affect hybrid hard coatings characteristics. Especially, the hardness of hybrid hard coatings significantly improved with the addition of PETTA, due to the PETTA has four reaction functional groups. The optimal bilayer superhydrophilic hard coatings has not only excellent hardness (4H) but also superior flexibility. It also exhibited that superhydrophilic properties (WCA<10°) were effectively improved after applying the superhydrophilic nanoparticles on the hybrid hard coatings surface. The average transmittance (400-700 nm) of the coatings also increased by applying the nanoparticles layer efficiently. It demonstrated that the bilayer hybrid hard coatings can be applied on many industries.關鍵字(中) ★ hard coating
★ superhydrophilic
★ sol-gel process關鍵字(英) 論文目次 第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 本文架構 2
第二章 基本理論與文獻回顧 3
2-1 溶膠凝膠法 3
2-1-1 溶膠凝膠法之反應機制 3
2-1-2 溶膠凝膠法之反應影響因子 5
2-1-3 溶膠凝膠法之成膜方式 7
2-2 紫外光光固化原理 9
2-2-1 UV光源之定義 9
2-2-2 光固化反應原理及反應官能基介紹 10
2-3 親水性原理 12
第三章 實驗架構與儀器介紹 16
3-1 實驗流程架構 16
3-2 分析與量測之儀器 20
3-2-1 可見光/近紅外光光譜儀 20
3-2-2 光學顯微鏡 21
3-2-3 原子力顯微鏡 22
3-2-4 水接觸角量測儀 23
3-2-5 薄膜厚度輪廓測度儀 24
3-2-6 鉛筆硬度計 25
3-2-7 百格測試機 26
3-2-8 自動耐磨耗測驗機 27
第四章 實驗結果與討論 28
4-1 超親水硬質薄膜之薄膜參數 28
4-1-1 MSMA添加量的影響 28
4-1-2 交聯劑(DPHA)添加量的影響 31
4-1-3 交聯劑(PETTA)添加量的影響 35
4-1-4 光起始劑添加量的影響 38
4-2 超親水硬質薄膜之薄膜特性 39
4-2-1 光學性質-穿透率 39
4-2-2 耐磨耗性質 40
4-2-3 硬度 42
4-2-4 附著力 43
4-2-5 防霧性質 44
4-2-6 超親水效果之耐水性 45
4-2-7 超親水效果之耐久性 46
第五章 結論 47
參考文獻 48參考文獻
[1] L. Di Maio, P. Scarfato, M.R. Galdi, L. Incarnato, Journal of Applied Polymer Science, 132 (2015) DOI: 10.1002/app.41465.
[2] P. Vera, Y. Echegoyen, E. Canellas, C. Nerin, M. Palomo, Y. Madrid, C. Camara, Anal Bioanal Chem., 408 (2016) 6659-6670.
[3] X. Wu, F. Li, W. Wu, T. Guo, Applied Surface Science, 295 (2014) 214-218.
[4] Polyethylene Terephthalate (PET) Global Market to 2020 – Increasing Demand from Carbonated Soft Drinks, Food and Beer Packaging in BRIC Nations Driving Growth, (2012), and the web page at http://www.chemie.de/marktstudien/10877/polyethylene-terephthalate-pet-global-market-to-2020-increasing-demand-from-carbonated-soft-drinks-food-and-beer-packaging-in-bric-nations-driving-growth.html.
[5] H. Su, M. Zhang, Y.H. Chang, P. Zhai, N.Y. Hau, Y.T. Huang, C. Liu, A.K. Soh, S.P. Feng, ACS Appl. Mater. Interfaces, 6 (2014) 5577-5584.
[6] C. Hu, S. Lin, W. Li, H. Sun, Y. Chen, C.-W. Chan, C.-H. Leung, D.-L. Ma, H. Wu, K. Ren, Lab Chip, 16 (2016) 3909-3918.
[7] X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong, G. Shen, Adv. Mater, 26 (2014) 4763-4782.
[8] D. Lee, S. Yang, Sensors and Actuators B: Chemical, 162 (2012) 425-434.
[9] M.G. Kast, L.J. Enman, N.J. Gurnon, A. Nadarajah, S.W. Boettcher, ACS Appl. Mater. Interfaces, 6 (2014) 22830-22837.
[10] R. Fateh, R. Dillert, D. Bahnemann, Langmuir, 29 (2013) 3730-3739.
[11] C.C. Chang, F.H. Huang, H.H. Chang, T.M. Don, C.C. Chen, L.P. Cheng, Langmuir, 28 (2012) 17193-17201.
[12] W.J. Lee, W.T. Park, S. Park, S. Sung, Y.Y. Noh, M.H. Yoon, Adv. Mater, 27 (2015) 5043-5048.
[13] R.V. Lakshmi, T. Bharathidasan, B.J. Basu, Applied Surface Science, 257 (2011) 10421-10426.
[14] S.A. Mahadik, D.B. Mahadik, M.S. Kavale, V.G. Parale, P.B. Wagh, H.C. Barshilia, S.C. Gupta, N.D. Hegde, A.V. Rao, Journal of Sol-Gel Science and Technology, 63 (2012) 580-586.
[15] R. Taurino, E. Fabbri, D. Pospiech, A. Synytska, M. Messori, Progress in Organic Coatings, 77 (2014) 1635-1641.
[16] H. Xie, W. Shi, Composites Science and Technology, 93 (2014) 90-96.
[17] M. Mohseni, S. Bastani, A. Jannesari, Progress in Organic Coatings, 77 (2014) 1191-1199.
[18] J. Yun, T.S. Bae, J.D. Kwon, S. Lee, G.H. Lee, Nanoscale, 4 (2012) 7221-7230.
[19] C.-C. Chang, C.-M. Chen, F.-H. Hwang, C.-C. Chen, L.-P. Cheng, Journal of Coatings Technology and Research, 9 (2012) 561-568.
[20] H.S. Wei, C.C. Kuo, C.C. Jaing, Y.C. Chang, C.C. Lee, Journal of Sol-Gel Science and Technology, 71 (2014) 168-175.
[21] Y.-C. Chang, C.-C. Lee, S.-R. Huang, C.-C. Kuo, H.-S. Wei, Thin Solid Films, (2016), and the web page at http://dx.doi.org/10.1016/j.tsf.2016.02.034.
[22] R. Fateh, R. Dillert, D. Bahnemann, Langmuir, 29(2013), 3730−3739
[23] C-C Chang, F-H Huang, H-H Chang, T-M Don, C-C Chen, Liao-Ping Cheng, Langmuir, 28(2012), 17193−17201
[24] C. Esposito Corcione, R. Striani, M. Frigione, Progress in Organic Coatings, 77 (2014), 1117–1125
[25] the web page at http://www.che.tku.edu.tw/download.php?filename=55_e431b5e6.doc&dir=archive&title=File
[26] the web page at https://en.wikipedia.org/wiki/File:SolGelCartoon.png
[27] the web page at
http://www.zeepedia.com/read.php?sol-gel_techniques_definitions_general_mechanism_inorganic_route_synthetic_strategies_in_chemistry&b=132&c=5
[28] the web page at
http://www.amtouch.com.tw/tw/amt-introduces-pci-touch-panels-with-uv-resistance/
[29] the web page at https://zh.wikipedia.org/wiki/%E8%A1%A8%E9%9D%A2%E8%83%BD
[30] the web page at https://ir.nctu.edu.tw/bitstream/11536/79225/7/550807.pdf
[31] Soumendra K. Basu, L.E. Scriven, L.F. Francis, A.V. McCormick, Progress in Organic Coatings, 53(2005), 1–16指導教授 李正中(Cheng-Chung Lee) 審核日期 2017-8-21 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare