國立中央大學 107 學年度碩士班考試入學試題

所別	:	化學工程與本	才料工程?	學系碩士	一班 甲組(一般生)		共 <u>3</u> 頁	第一頁
科目	:	化工熱力學及	及化學反	應工程					
本科	考註	式可使用計算器	景,廠牌	、功能不	拍			*請在答案卷(卡)	內作答
		<u>擇題(A1)大題</u> 言 算題請詳列計分		卡 內作答	。計算題與	問答題(<u>B1)~(B5)</u> 大。	題請在 <u>答案卷</u> 內化	乍答,
	(A1) (25 pts)								
Choose the one alternative that best completes the statement or answers the ques								the question. The	
	peroxydisulfate ion $(S_2O_8^{-2})$ reacts with the iodide ion in aqueous solution via the reaction: $S_2O_8^{2-}$ (aq) + 3 I ⁻ (aq) $\rightarrow 2 SO_4^{2-}$ (aq) + I ₃ (aq) An aqueous solution containing 0.050 M of $S_2O_8^{2-}$ ion and 0.072 M of I ⁻ is prepared, and the progress of the reaction followed by measuring [I ⁻]. The data obtained is given in the table								
		below.							
		Time (s)	0.000	400.0	800.0	1200.0	1600.0	-	
		[I ⁻] (M)	0.072	0.057	0.046	0.037	0.029	-	
		[1] (111)	0.072	0.057	0.010	0.037	0.027	<u>.</u>	
	1.	The average rate	d 800.0 s is _	M/s.					
							D) 2.8 x 10 ⁻⁵	(E) 3.6 x 10 ⁻⁴	
ŀ									
	2. A second-order reaction has a half-life of 18 s when the initial concentration of reactant								
		M. The rate constant for this reaction is M ⁻¹ s ⁻¹ .							
		(A) 2.0×10^{-2}	(B) 18		(C) 3.8 x 1	0^{-2} (2)	D) 7.8 x 10 ⁻²	(E) 1.3	
	2	A 1 J.				TC 120/ -	. C.41		-0
	3.	A compound decomposes by a first-order process. If 13% of the compound decomposes in 60 minutes, the half-life of the compound is							
		(A) -5	(B) 299		(C) 20		D) 12	(E) -18	
1		(11) 3	(D) 2)	•	(C) 20		D) 12	(L) -10	
	4.	4. The rate constant for a particular zero-order reaction is 0.075 M s ⁻¹ . If the initial concentration							
		of reactant is 0.537 M, it takes s for the concentration to decrea							
		(A) 7.2	(B) 0.0	40	(C) 5.8	(D) - 0.047	(E) -5.8	一些
									参考
	5.	The reaction							月月
		$2 \text{ NOBr } (g) \rightarrow 2 \text{ NO } (g) + \text{Br}_2 (g)$							
		is a second-order reaction with a rate constant of 0.80 M ⁻¹ s ⁻¹ at 11 °C. If the initial concentration							
		of NOBr is 0.04							
		(A) 0.0348 M	(B) 0.0	324 M	(C) 0.0363	5 M . (D) 0.0276 M	(E) 0.0402 M	

國立中央大學 107 學年度碩士班考試入學試題

所別: 化學工程與材料工程學系碩士班 甲組(一般生)

共3頁 第2頁

科目: 化工熱力學及化學反應工程

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

(B1) (25 pts)

The first-order, irreversible reaction (A \rightarrow B) takes place in a 0.3 cm radius spherical catalyst pellet at T = 450 K. At 0.7 atm partial pressure of A, the pellet's production rate is -2.5×10^{-5} mol/(g s). Determine the production rate at the same temperature in a 0.15 cm radius spherical pellet. The pellet density is $\rho_p = 0.85$ g/cm³. The effective diffusivity of A in the pellet is $D_A = 0.007$ cm²/s.

Hint:
$$R_{Ap} = -\eta k c_{As}$$
, $\Phi = \sqrt{\frac{ka^2}{D_A}}$, and $\eta = \frac{1}{\Phi} \left[\frac{1}{\tanh 3\Phi} - \frac{1}{3\Phi} \right]$

(B2) (10 pts)

Understanding phase diagrams of various types of fluid phase behaviors is essential for a chemical engineer. According to the vapor-liquid-liquid equilibrium phase diagram for HF/C₂F₃Cl₃ at 383.15 K [adapted from M. Lencka and A. Anderko, *AIChE J.*, <u>39</u>, 533 (1993)], please write down the type of phase (solid, vapor, or liquid) or phase equilibrium (solid-liquid, solid-vapor, vapor-liquid, liquid-liquid, solid-vapor-liquid, or vapor-liquid-liquid) for regions marked as (a) - (e).

(B3) (15 pts)

Consider a liquid mixture of components 1, 2, 3, and 4. The excess Gibbs energies of all the binaries formed by these components obey relations of the form

$$g_{ij}^{EX} = A_{ij} x_i x_j$$

where A_{ij} is the constant characteristic of the i-j binary. Derive an expression for the activity coefficient of component 1 in the quaternary solution.

國立中央大學 107 學年度碩士班考試入學試題

所別: 化學工程與材料工程學系 碩士班 甲組(一般生)

共3頁 第3頁

科目: 化工熱力學及化學反應工程

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

(B4) (10 pts)

In a binary liquid mixture of B and C at constant temperature and pressure, the excess Gibbs energy of mixing is given explicitly by an empirical equation in terms of the mole fractions of B and C

$$\frac{\Delta G^{EX}}{RT} = f[x_B, x_C] = x_B x_C [k_1 + k_2 (x_B - x_C) + k_3 (x_B - x_C)^2]$$

where for the particular conditions of interest, $k_1 = 2.0$, $k_2 = 0.2$, and $k_3 = -0.8$. Determine if there are regions of immiscibility and any limits of essential instability.

(B5) (15 pts)

- 1. (5 pts) Derive the Gibbs-Duhem equation for a binary solution. State clearly any assumptions made. What is the physical meaning of the Gibbs-Duhem equation?
- 2. (5 pts) According to the Gibbs-Duhem equation, please proof that if material B in the A-B binary mixture behaves ideally, the A does also? Also, please proof that the component B obeys the Henrian behavior if the component A obeys the Raoultian behavior at $x_A \rightarrow 1$?
- 3. (5 pts) The osmotic coefficient, ϕ , is defined as

$$\phi = -\frac{x_A}{x_B} \ln a_A$$

By writing $r = x_B/x_A$ and using the Gibbs-Duhem equation, show that we can calculate the activity (a_B) of B from the activities of A over a composition range by using the formula

$$\ln(\frac{a_B}{r}) = \phi - \phi(r=0) + \int_0^r (\frac{\phi - 1}{r}) dr$$

where x_i denotes the mole fraction of component i.

