類組:電機類 科目:控制系統(300D)

共 2 頁第 / 頁

※請在答案卷內作答

Note: In this exam, you have 4 problems need to solve. Each problem has its own credit point as shown. The total credit point is 100.

- 1. (30%) Consider the feedback control system in Figure 1. Suppose that $G(s) = \frac{1}{(s+1)(s+2)}$ and $C(s) = K_P + \frac{K_I}{s}$, where K_P and K_I are positive constants. Answer the following questions.
- (a) (10%) Find the conditions on K_P and K_I such that the closed-loop system is stable.
- (b) (10%) Let $M(s) = \frac{Y(s)}{R(s)}$ be the closed-loop transfer function from r to y, where R(s) and Y(s) are the Laplace transforms of r and y, respectively. Find all possible values of $\frac{K_I}{K_P}$ such that M(s) is a stable second-order system.
- (c) (10%) (Continued from part (b)) For each $\frac{K_I}{K_P}$ and the associated M(s) in part (b), find the conditions on K_P such that M(s) is underdamped.

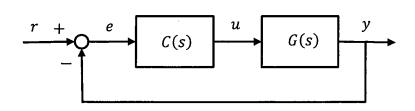


Figure 1: Feedback Control System

- 2. (20%) Consider the feedback control system in Figure 1. Let $G(s) = \frac{K}{s(s+a)}$ and $G(s) = \frac{(s+z)(s+\bar{z})}{s^2+4}$, where $z \in \mathbb{C}$, \bar{z} is the complex conjugate of z, and a, K > 0. Answer the following questions.
- (a) (10%) If $Re\{z\} = 1$, find the conditions on a such that the closed-loop system is stable as $K \to \infty$.
- (b) (10%) Let z = 1 + 2j and a = 3. Sketch the root locus of the system as K varies from 0 to ∞ . Please calculate the intersection of the asymptotes and the departure angles of the complex poles at $\pm 2j$.

(Note: The location of the breakaway point is not required.)

3. (30%) Consider a unity feedback system as depicted in Figure 2 below, where $G_c(s)$ and $G_p(s)$ denote the controller and system plant, respectively.

類組:電機類 科目:控制系統(300D)

共_2_頁 第_2_頁

※請在答案卷內作答

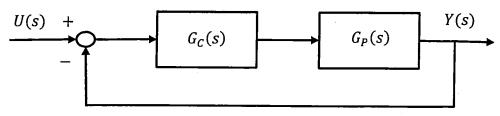


Figure 2.

Here, U(s) and Y(s) denote the Laplace transform of the input and output.

- (a) (12%) Let $G_P(s) = \frac{1}{s(s+2)}$ and $G_C(s) = K$. Suppose we need to have the resonant peak $M_P(s) = \frac{1}{s(s+2)}$ and $G_C(s) = K$. Suppose we need to have the resonant peak the corresponding resonant frequency $\omega_P(s) = \frac{1}{s(s+2)}$ and the bandwidth BW?
- (b) (6%) Let the system plant $G_P(s)$ be the same as the one in part (a) with $G_C(s) = \frac{K}{s+a}$. Find the range of K and a so that the closed-loop system is stable.
- (c) (12%) Let the system plant $G_P(s)$ and the controller $G_C(s)$ be the same as the ones given in part (b) with a = 1 and K = 5. Draw the Nyquist plot of the system. What will be the phase cross-over frequency and gain-margin?
- 4. (20%) Consider the closed-loop feedback system as given in Figure 2 above with $G_P(s) = \frac{1}{s^2(s+10)}$ and answer the following questions:
- (a) (8%) Let $G_C(s) = K$. Draw the Nyquist plot of the system and determine whether the closed-loop system is stable by using Nyquist stability criterion. If system is stable, find the range of K for guaranteeing the system stability.
- (b) (12%) Design a PD-controller or PI-controller to make the closed-loop system stable by using Nyquist stability criterion. That is, to change $G_C(s) = K_P + K_D s$ or $G_C(s) = K_P + \frac{K_I}{s}$ with positive values of K_P , K_D and K_I . In addition, find the range of K_P with $K_D = 1$ for PD-controller or the range of K_I with $K_P = 1$ for PI-controller to guarantee the system stability.