博碩士論文 952202013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.14.144.145
姓名 梁昕蕙(Hsin-Hui Liang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 黏著叢集在時變外力下的強度
(Strength of adhesion clusters under shared linear loading)
相關論文
★ 鍺銻碲相變化奈米薄膜之奈米尺度光熱性質的研究★ 波在一維系統中的傳播與局域化
★ 生物膜黏著引發的相分離—等效膜勢與數值模擬★ 非平衡生物膜上的區塊形成
★ 液滴上的彈性網絡★ Modeling geometrical trajectories of actin-based motility
★ 隨機布耳網路在多連線且臨界情形下的特性★ 模擬脂質雙層膜上的分子機器
★ 組織動力學之建模★ Cell motility: active gel coupled to adhesion sites
★ Agent-based model for an order-driven market: herding effect, limit order strategies, and volatility enhanced trading activities★ Dynamics of the free boundary of a monolayer cell sheet
★ Onset of movement in a one-dimensional active gel model of cell motility★ Hydrodynamics and spontaneous flow of active permeating polar gels
★ Complex one-dimensional motion in complex soft matter systems★ Bacterial chemotaxis in random environment
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究黏著叢集在時變外力下斷裂的過程。此叢集由 Nt 個平行排列的配體–受體的鍵結所組成,並在一個隨著時間線性增加的外力 F = Gamma t 作用下所有鍵結將會全部斷裂, Gamma 為叢集對外力的載荷率。我們選擇了兩種不同的單一配體–受體的結合率與分離率,並且利用蒙地卡羅模擬法來模擬叢集斷裂的過程。研究結果顯示黏著叢集的特性與一特徵力 fc = Fc/Nt 及一特徵載荷率 Gamma c 有關。當 Gamma< Gamma c,叢集的斷裂發生在力為 fr ,其值接近但小於 fc 。在此 Gamma的範圍下,叢集的斷裂行為可比擬為一粒子在一維座標下跨越位能障礙的過程。在將此叢集系統的自由能 G (Nb, F) 近似為配體–受體鍵結數目 Nb 的三次多項式下,理論計算發現 < Fc - Fr > Nt^(-1/3) 正比於 [ln Gamma^(-1)]^(2/3),此關係式亦在模擬結果中被證實。當 Gamma= Gamma c,任何叢集大小都在 fr 等於 fc 時發生斷裂。當 Gamma> Gamma c, fr 大於 fc 且 fr 隨載荷率快速地增大,我們亦發現擁有較多的總鍵結數 Nt 之叢集的反應速率方程式 ( rate equation ) 之數值解與模擬結果吻合。
摘要(英) This thesis studies the dissociation of an adhesion cluster under shared linear loading
theoretically. A cluster of ligand-receptor pairs in cell adhesion can be modeled as Nt
parallel weak bonds between two surfaces. The cluster dissociates under an applied force
F which increases linearly with time t, that is, F = Gamma t, where Gamma is the loading rate. Monte
Carlo simulations of master equation are performed with two choices of kon and koff ,
the rebinding and unbinding rates of a bond, respectively. Our simulations show that
there exist a critical force per bond fc = Fc/Nt and a critical loading rate Gamma c, and some
universal properties of the clusters are associated with these quantities. At Gamma < Gamma c, the
rupture force per bond fr is close to but lower than fc. In this regime, cluster dissociation
can be regard as a one-dimensional barrier crossing process. We approximate the free
energy of the adhesion cluster G(Nb, F) at given F by a cubic function of Nb, number
of closed bonds in the cluster. From analytical solutions we obtained a scaling relation
< Fc - Fr >Nt^(-1/3) ~ [ln Gamma^(-1)]^(2/3) + constant. This scaling relation is consistent with the
numerical simulations of the master equation. At Gamma = Gamma c, the cluster dissociation occurs
at fr = fc for any cluster size. At Gamma > Gamma c, fr > fc and fr increases rapidly with Gamma,
especially for small clusters. There is no free energy barrier when the clusters rupture
at fr > fc, the numerical solutions of rate equation agree with numerical simulations of
the master equation.
關鍵字(中) ★ 黏著強度 關鍵字(英) ★ ligand-receptor pairs
★ adhesion
論文目次 1 Introduction 1
2 The Model 6
2.1 Escape rate of single bond . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Constant kon model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Nonconstant kon model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Free energy of an adhesion cluster 14
3.1 From master equation to free energy . . . . . . . . . . . . . . . . . . . . 14
3.2 Free energy landscape at different f . . . . . . . . . . . . . . . . . . . . . 15
4 Numerical and analytical solutions for rupture force 20
4.1 Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.1 Simulation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Mean rupture force of an adhesion cluster under low loading rate . . . . . 31
4.2.1 Distribution of rupture force . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Rupture force for fr < fc . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Solution of rate equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5 Conclusion 45
Bibliography 48
參考文獻 [1] G. M. Cooper, The Cell - A Molecular Approach, second edition. (Sinauer Asso-
ciates, Inc., Sunderland (MA), 2000).
[2] G. I. Bell, Science 200, 618 (1978).
[3] T. Erdmann and U. S. Schwarz, Phys. Rev. Lett. 92, 108102 (2004).
[4] C. C. Tang, Y. P. Chu, and H. Y. Chen, Phys. Rev. E 76, 061905 (2007).
[5] E.-L. Florin, V. T. Moy, and H. E. Gaub, Science 264, 415 (1994).
[6] R. Alon, S. Chen, K.D. Puri, E.B. Finger, T.A. Springer. J. Cell Biol. 138, 1169
(1997).
[7] R. Merkel, P. Nassoy, A. Leung, K. Ritchie, E. Evans. Nature 397, 50 (1999).
[8] K. Prechtel, A. R. Bausch, V. Marchi-Artzner, M. Kantlehner, H. Kessler, and R.
Merkel, Phys. Rev. Lett. 89, 028101 (2002).
[9] U. Seifert, Europhys. Lett. 58, 792 (2002).
[10] T. Erdmann and U. S. Schwarz, Europhys. Lett. 66, 603 (2004).
[11] E. Evans and K. Ritchie, Biophys. J. 72, 1541 (1997).
[12] O. K. Dudko, A. E. Filippov, J. Klafter, and M. Urbakh, Proc. Natl. Acad. Sci.
U.S.A. 100, 11378 (2003).
[13] H. A. Kramers, Physica (Amsterdam) 7, 284 (1940).
[14] R. Merkel, Phys. Rep. 346, 344 (2001).
[15] E. Evans, A. Leung, V. Heinrich, and C. Zhu, Proc. Natl. Acad. Sci. U.S.A. 101,
11281 (2004).
[16] D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
[17] R. H. Landau and M. J. P¶aez, Computational Physics - Problem Solving with Com-
puters. (John Wiley and Sons, Inc., New York, 1997).
[18] N. G. van Kampen, Stochastic Processes in Physics and Chemistry, third edition.
(North Holland, Amsterdam, 1992).
[19] F. Li and D. Leckband, J. Chem. Phys. 125, 194702 (2006).
指導教授 陳宣毅(Hsuan-Yi Chen) 審核日期 2009-1-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明