![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:15 、訪客IP:3.145.138.21
姓名 王价輝(Jie-Huei Wang) 查詢紙本館藏 畢業系所 統計研究所 論文名稱 分析二維個數資料之有母數強韌法 相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在處理二維個數資料時,為了分析時的便利,多數情況下都會假設資料服從二維卜瓦松分配或二維負二項分配。但是一旦資料不是來自二維卜瓦松分配或二維負二項分配時,那麼根據二維卜瓦松分配或二維負二項分配模型所做的統計推論便是錯誤的。
本文將Royall and Tsou(2003)所提出的槪似函數修正法應用於二維個數資料之母體平均數之比率的推論上,說明所提出的二維卜瓦松實作模型和二維負二項實作模型是可以經過適當的修正而被強韌化。在大樣本時,且部分正規條件下,不論資料真正分配為何,據此強韌槪似函數可對母體平均數之比率參數做正確統計推論。摘要(英) This thesis utilizes the robust likelihood technique proposed by Royall and Tsou (2003) to develop parametric robust inferences about the comparison of two dependent populations of counts.
More specifically, bivariate Poisson and bivariate negative binomial models are corrected to become robust. With large samples the two adjusted likelihood functions are asymptotically legitimate for the parameter of interest, without the knowledge of the true underlying distributions. Simulations are used to demonstrate the efficacy of the proposed robust method.論文目次 目錄
第一章 緒論.........................................................................................1
第二章 強韌迴歸.................................................................................2
第三章 二維卜瓦松模型的修正項.....................................................4
3.1求參數的最大概似估計量.................................................................4
3.2 的計算..............................................................................................8
3.3 的計算............................................................................................17
第四章 二維負二項模型的修正項...................................................28
4.1求參數的最大概似估計量...............................................................28
4.2 的計算............................................................................................31
4.3 的計算............................................................................................34
第五章 模擬研究...............................................................................42
5.1資料生成...........................................................................................42
5.2模擬過程...........................................................................................43
5.3模擬結果...........................................................................................43
第六章 結論.......................................................................................47
第七章 參考文獻...............................................................................48參考文獻 1. Holgate, P(1964). Estimate for the bivariate Poisson distribution. Biometrika, 51, 1 and 2, 241-245.
2. I.L. Solis-Trapala and V. T.Farewell(2005). Regression analysis of overdispersed correlated count data with subject specific covariates. Statistics in Medicine, 24, 2557-2575.
2. Royall, R.M., and Tsou, T-S (2003). Interpreting statistical evidence using imperfect models: Robust adjusted likelihood functions. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 65, 391-404.
3. Tsou, T-S (2003). Comparing two population means and variances - a parametric robust way. Communications in Statistics - Theory and Methods, 32, 10, 2013-2019.
4. Tsou, T-S and K-F Cheng (2004) Parametric robust regression analysis of contaminated data. Communications in Statistics - Theory and Methods, 33, 1887-1898.
5. Tsou, T-S and Chien, L-C (2005). Parametric robust tests for multiple regression parameters under generalized linear models. Advances and Applications in Statistics, 1, 51-86.
6. Tsou, T-S (2005a). Robust inferences for the correlation coefficient – a parametric robust way. Communications in Statistics - Theory and Methods, 34, 147-162.
7. Tsou, T-S (2005b). Inferences of variance functions- a parametric robust way. Journal of Applied Statistics, Vol. 32:785-796.
8. Tsou, T-S (2006a). Robust Possion regression. Journal of Statistical Planning and Inference, 136, 3173-3186.
9. Tsou, T-S (2006b). A simple and exploratory way to determine the mean-variance relationship in generalized linear models. (to appear in Statistics in Medicine)指導教授 鄒宗山(Tsung-Shan Tsou) 審核日期 2006-6-21 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare