![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:13 、訪客IP:3.144.226.170
姓名 廖庭緯(Ting-Wei Liao) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 以離心模型模擬傾斜砂層在側潰時之動態反應
(Centrifuge Modeling on Responses of Inclined Sandy Slope During Lateral Spreading)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 當地震發生,地下水位高的砂質地盤易產生土壤液化,並伴隨著相關複合式災害,例如土層中維生管線破裂、地表不均勻沉陷與上部結構傾倒等,影響週圍居民的生命財產安全,因此自日本新瀉大地震以後,各國學者積極投入在土壤液化引致的相關議題上。
2014 年開始的國際合作之土壤液化詴驗分析計畫Liquefaction Experiment and Analysis Projects, LEAP),主要目的是在世界上不同物理模型研究團隊所進行相同原型(Prototype)的離心模型詴驗,再將結果提供數值模型團隊做驗證及校正。本研究為 2017 年 LEAP 國際合作研究計畫內容進行高品質的土壤液化與側向滑移詴驗,詴體配置為 5 度緩坡飽和砂層,探討因受震導致土壤液化引致土壤側潰之行為,透過水平色砂層、地表位移計與垂直埋設麵條觀察土層變形情況,利用微型圓錐貫入詴驗比較液化前後土壤沿深度之阻抗,不同埋設深度的加速度計與孔隙水壓計記錄砂土層因液化導致土壤側潰過程之土壤反應。
試驗結果顯示:(1)輸入震動方向與坡面的坡向反相會導致加速度具突波的現象;(2)地表土壤受震發生側潰會向斜坡之下坡處移動,特別是在中間高程偏下坡處之土壤位移量會較大;(3)受震後土壤剖面側向位移隨深度愈深而愈小,在地表下深度 3.0 m 就沒有側向移動; (4)錐尖阻抗隨著貫入深度的增加而增加,沿伸度增加之阻抗值約為1100 kPa/m。摘要(英) Following the observations from liquefaction-related damage during
earthquakes conducted on sandy ground with high ground water level, such as critical
infrastructure failures or structure failure due to differential settlement resulting in
threaten local residents`s life and property safety, it has provided significant insights
into the liquefaction phenomenon after Niigata earthquake.
In 2014, there was a project called the Liquefaction Experiments and Analysis
Projects (LEAP), which aims to calibrate and validate the centrifuge modeling and
numerical modeling. This study refers to the LEAP_2017_UCD project for
corresponding research and conducted a series of high quality centrifuge modeling
tests to investigate lateral spreading after shaking. By different sensors to observe
deformation of soil deposit, including horizontal color thin layers, surface markers
and spaghetti. Using mini cone penetration test on the specimen to detect the
resistance induced by shaking, but also setting accelerometers and pore water
transducers were used to record the responses of soil deposit induced by liquefaction.
According to the test results: (1) It has prominent amplitude of spikes appear in
the phase of positive acceleration due to the direction of input base motion is opposite
to the direction of slope dip. (2) The soil on the ground surface move toward the
downslope after shaking, especially located at middleslope to downslope have lager
displacement. (3) The level of lateral spreading decreases along the depth of strata
until the depth of 3.0 m do not have any movement. (4) The cone tip resistance along
the depth increase and the ratio of the cone tip resistance to the depth is 1100 kPa/m.關鍵字(中) ★ 土壤液化
★ 離心模型振動台試驗
★ 側向滑移
★ 圓錐貫入試驗關鍵字(英) ★ soil liquefaction
★ centrifuge shaking table test
★ lateral spreading
★ cone penetration test論文目次 摘要 I
Abstract Ⅱ
致謝 Ⅲ
目錄 IV
圖目錄 Ⅵ
表目錄 XI
第一章 緒論 1
1.1 引言 1
1.2 研究動機與目的 1
1.3 論文架構 2
第二章 文獻回顧 4
2.1 離心模型試驗原理 4
2.1.1 離心模型原理 4
2.1.2 離心模型之基本相似律 4
2.1.3 動態離心模型之基本相似律 5
2.1.4 離心模型模擬 7
2.1.5 柯氏加速度之影響 8
2.2 土壤液化 12
2.2.1 土壤液化之定義 12
2.2.2 土壤液化之發生機制 13
2.2.1 土壤液化之相關災害 14
2.3 試體之飽和度 18
2.4 整合物理模型模擬與數值模擬在土壤液化之研究計畫 21
2.4.1 VELACS project 21
2.4.2 LEAP project 21
第三章 試驗設備、試驗配置與試驗步驟 25
3.1 試驗儀器及相關設備 25
3.1.1 中央大學地工離心機 25
3.1.2 單軸向振動台及資料擷取系統 26
3.1.3 資料擷取系統 31
3.1.4 固壁式蜂巢試驗箱(Rigid container) 32
3.1.5 移動式霣降設備 32
3.1.6 圓錐貫入試驗系統(Cone penetration test system) 34
3.1.7 各式量測工具 40
3.2 試驗配置及試驗材料 45
3.3 試體準備步驟與流程 48
3.3.1 試驗箱之準備與組立 48
3.3.2 重模試體製作 48
3.3.3 飽和試體準備 50
3.4 離心機繞行前準備與振動台試驗 51
第四章 試驗結果與分析 66
4.1 試驗概述及規劃 66
4.2 試驗結果 70
4.2.1 試驗LEAP2017_1-1之試驗結果 70
4.2.2 試驗LEAP2017_1-2之試驗結果 80
4.2.3 試驗LEAP2017_2-1之試驗結果 88
4.2.4 試驗LEAP2017_2-2之試驗結果 96
4.2.5 試驗LEAP2017_3-1之試驗結果 104
4.2.6 試驗LEAP2017_3-2之試驗結果 112
4.2.7 地中位移計分析 120
4.2.8 圓錐貫入試驗分析 128
4.2.9 試體飽和度分析 133
4.2.10 垂直沉陷分析(色砂層) 133
4.2.11 試驗箱頂部之加速度反應 134
4.3 綜合討論 135
4.3.1 比較相同基盤加速度輸入波形但不同輸入振幅之結果 135
4.3.2 比較不同輸入基盤加速度波形但相同輸入振幅之結果 140
4.3.3 比較土層之基本性質 155
第五章 結論 156
參考資料 158參考文獻 [1] Taylor, R. N. “Geotechnical Centrifuge Technology,” Hall & Wester, London.
(1995).
[2] Kutter, B. L., Carey, T. J., Hashimoto, T., Zeghal, M., Adboun, T., Kokkali, P.,
Madabhushi, G., Haigh, S., Burali d’ Arezzo, F., Madabhushi, S., Hung, W. Y.,
Lee, C. J., Chegn, H. C., Iai, S., Tobita, T., Zhou, Y. G., Chen, Y., Sun, Z. B. and
Manzari, M. T. “Leap-GWU-2015 Experiment Specifications, Results, and
Comparisons,” Soil Dynamics and Earthquake Engineering. (2017).
[3] Tobita, T., Ashino, T., Ren, J. and Iai, S. “Kyoto University LEAP-GWU-2015
tests and the importance of curving the ground surface in centrifuge modelling,”
Soil Dynamics and Earthquake Engineering. (2018).
[4] Carey, T., Hashimoto, T., Cimini, D. and Kutter, B. L. “LEAP-GWU-2015
centrifuge test at UC Davis,” Soil Dynamics and Earthquake Engineering. (2018).
[5] Manzari, M. T., Ghoraiby, M. E., Kutter, B. L., Zeghal, M., Abdoun, T., Arduino,
P., Armstrong, R. J., Beaty, M., Carey, T., Chen, Y., Ghofrani, A., Gutierrez, D.,
Goswami, N., Haigh, S. K., Hung, W. Y., Iai, S., Kokkali, P., Lee, C. J.,
Madabhushi, S. P. G., Mejia L., Sharp, M., Tobita, T., Ueda, K., Zhou, Y. and
Ziotopoulou, K. “Liquefaction experiment and analysis projects (LEAP):
Summary of observations from the planning phase,” Soil Dynamics and
Earthquake Engineering. (2017).
[6] Zeghal, M., Goswami, N., Kutter, B. L. Manzari, M. T., Abdoun, T., Arduino, P.,
Armstrong, R., Beaty, M., Chen, Y. M., Ghofrani, A., Haigh, S., Hung, W. Y., Iai,
S., Kokkali, P., Lee, C. J., Madabhushi, G., Tobita, T., Ueda, K., Zhou, Y. G., and
Ziotopoulou, K. “Stress-strain response of the LEAP-2015 centrifuge tests and
numerical predictions,” Soil Dynamics and Earthquake Engineering. (2018).
[7] Hung, W. Y., Lee, C. J. and Hu, L. M. “Study of the e?ects of container boundary
and slope on soil liquefaction by centrifuge modeling,” Soil Dynamics and
Earthquake Engineering. (2018).
[8] Zhou, Y. G., Sun, Z, B. and Chen, Y. M. “Zhejiang University benchmark
centrifuge test for LEAP-GWU-2015 andliquefaction responses of a sloping
ground,” Soil Dynamics and Earthquake Engineering. (2018).
[9] Popescu, R. and Prevost, J. H “Centrifuge validation of a numerical model for
dynamic soil liquefaction,” Soil Dynamics and Earthquake Engineering, Vol. 12,
pp.73-90. (1993).
[10] Popescu, R. and Prevost, J. H “Comparison between VELACS numerical ′class A′
predictions and centrifuge experimental soil test results,” Soil Dynamics and
Earthquake Engineering, Vol. 14, pp.79-92. (1995).
[11] Popescu, R. and Prevost, J. H “Reliability assessment of centrifuge soil test results,”
Soil Dynamics and Earthquake Engineering, Vol. 14, pp.93-101. (1995).
[12] Yang, T. and Sato, T. “Analytical study of saturation effects on seismic vertical
amplification of a soil layer,” GeAotechnique, Vol. 2, pp.161-165. (2001).
[13] Okamura, M. and Soga, Y. “Effects of pore fluid compressibility on liquefaction
resistance of partially saturated sand,” Soil and Foundation, Vol. 46, pp.695-700.
(2006).
[14] Yoshimi, Y., Tanaka, K. and Tokimatsu, K. “Liquefaction resistance of a partially
satureated sand,” Soil and Foundation, Vol. 29, pp.157-162. (1989).
[15] Okamura, M. and Inoue, T. “Preparation of fully saturated models for liquefaction
study,” Physical Modelling in Geotechnics, Vol. 12, pp.39-46. (2012).
[16] Kramer, S. L. “Geotechnical Earthquake Engineering,” Prentice Hall, New Jersey
(1996).
[17] 李崇正,「離心模型試驗在大地工程之應用」,地工技術雜誌,第 36 期,第
76-91 頁(1991)。
[18] 李崇正、陳慧慈、洪汶宜、蔡晨暉、陳婷、涂奕峻、謝孟修,「預振技術在
單樁離心模型振動台試驗系統識別的應用」,第十五屆大地工程學術研究討
論會,9 月 11-13 日,雲林,台灣 (2013)。
[19] 郭玉潔,「探討積層板試驗箱進行動態離心模型試驗之邊界效應」,碩士論文,
國立中央大學土木工程學系,桃園 (2009)。
[20] 王崇儒,「利用彎曲元件探查離心砂土模型剪力波速剖面及其工程上的應用」,
碩士論文,國立中央大學土木工程學系,桃園 (2010)。
[21] 呂昕澔,「以離心模型模擬離岸風機單樁受單向反覆水平側推行為」,碩士論
文,國立中央大學土木工程學系,桃園 (2014)。
[22] 胡林楙,「基盤土壤液化引致的側潰對上方土堤的影響及其改善對策」,碩士
論文,國立中央大學土木工程學系,桃園 (2017)。
[23] 黃俊學,「基盤土壤液化對上方土堤位移的影響」,碩士論文,國立中央大學
土木工程學系,桃園 (2016)。指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2018-8-21 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare