摘要(英) |
With the continuous advancement of science and technology and the active operation of global economic activities, humans have consumed increasingly more fossil fuels to generate electricity. Greenhouse gas emissions have been increasing, which results in global warming and makes the climate unstable. In order to reduce production fluctuations due to weather conditions, the limited area of cultivated land and the high construction cost, hydroponic technology has become a new choice for greenhouse agriculture. In recent years, a new ecological cycle(生態循環) farming system, Aquaponic, has been proposed to integrate fish culture with hydroponic cultivation. In aquaponics, nutrients generated by the decomposition of fish waste are used as fertilizer to grow plants, thus reducing environmental impact due to water discharge from traditional aquaculture.
In this research, a sustainable food production system proposed with the integration of aquaponics and solar photovoltaic systems. Solar energy output is calculated from the amount of local sunlight. The problem is formulated as a linear programming model. Considered the budget and setting cost of aquaponic system, solar system and storage system. The objective are “maximize solar energy generation”. Use Gurobi software tool to find the best decision for configuring solar energy and energy storage systems.
Under the goal of meeting the aquaponic system′s electricity demand and the maximum green power output, the linear programming model suggests to increase the number of installed solar panels as much as possible as long as the budget allows, with no need to install energy storage system. To meet the system′s electricity demand, power will be chose to provide by the solar system or power company cause the more inexpensive electricity price. |
參考文獻 |
中文文獻
1. 大氣水文研究資料庫(2018)。網址:https://dbahr.narlabs.org.tw/ 。
2. 台灣電力公司(2016)。台電系統發購電量結構。網址:https://www.taipower.com.tw/tc/page.aspx?mid=204(上網日期:2018/02/14)。
3. 台灣電力公司(2018)。購入電力概況。網址:https://www.taipower.com.tw/tc/page.aspx?mid=207&cid=165&cchk=a83cd635-a792-4660-9f02-f71d5d925911(上網日期:2018/06/15)。
4. 行政院農業委員會(2018)。申請農業用地作農業設施容許使用審查辦法,農企字第1070012379A號令。
5. 邱相文,蔡致榮,林木連,黃禮棟(2012)。日本植物工廠參訪與發展現況介紹(農企業篇)。行政院農業委員會101年第三季農業資訊科技應用發展電子報。
6. 非凡新聞-黃梅琴、熊汝璽(2018)。循環經濟崛起-魚菜共生成新興產業。網址:https://goo.gl/WfiEb2(上網日期:2018/03/03)。
7. 特斯拉儲能系統網站。網址:https://www.tesla.com/zh_TW/powerwall(上網日期:2018/06/15)。
8. 國研院政策中心(2015)。從數據看全球暖化。政策研究指標資料庫PRIDE,第2015008期。網址:https://pride.stpi.narl.org.tw/(上網日期:2018/02/27)。
9. 陳士偉(2017)。淺談矽晶太陽能電池。國家奈米元件實驗室奈米通訊,第24卷第1期,第40-42頁。
10. 陳登陽,林琨堯,?昶立(2017)。魚菜共生:打造零汙染的永續農法及居家菜園。
11. 陳瑤湖,梁榮元(2016)。魚菜共生體系發展研究與展望。農業生技產業季刊,第46期,第43-51頁。
12. 黃德威,薛守志,劉于溶,楊順德(2017)。養殖水耕-魚菜共生。
13. 楊明樺,鄭金華(2011)。Aquaponics養殖與水耕複合系統簡介。水試專訊,第33期,第36-38頁。
14. 楊純明(2018)。多贏--農電能共榮發展。行政院農業委員會。網址:https://www.coa.gov.tw/ws.php?id=2506246(上網日期:2018/04/20)。
15. 楊清富,鄭安秀(2016)。魚菜共生系統原理與方法。台南區農業改良場技術專刊第165期。
16. 經濟部太陽光電單一服務窗口(2018)。網址:http://www.mrpv.org.tw/(上網日期:2018/06/26)。
17. 經濟部能源局(2016)。太陽光電2年推動計畫。
18. 綠能趨勢網(2017)。住宅型儲能系統彙整。網址:https://www.energytrend.com.tw/knowledge/20170315-14307685.html(上網日期:2018/06/15)。
19. 聚恆科技股份有限公司(2018)。網址:http://www.hengs.com/solarproducts-pv%20module.html(上網日期:2018/06/22)。
20. 劉富光,楊順德,黃德威,鄭安秀,楊清富(2015)。赴澳洲研習養殖水耕技術出國報告。
21. 樂樂農業科技有限公司(2018)。網址:http://www.lerler.com.tw/synopsis.html (上網日期:2018/02/14)。
?
英文文獻
22. Abara, J. (1989). Applying Integer Linear Programming to the Fleet Assignment Problem. Interfaces, 19, 4, 20-28.
23. Bloomberg New Energy Finance Website (2017). Lithium-ion Battery Costs: Squeezed Margins and New Business Models. Available from https://about.bnef.com/blog/lithium-ion-battery-costs-squeezed-margins-new-business-models/, Accessed 25 June 2018.
24. Curry, C. (2017). Lithium-Ion Battery Costs: Squeezed Margins and New Business Models. Bloomberg New Energy Finance. Available from https://about.bnef.com/blog/lithium-ion-battery-costs-squeezed-margins-new-business-models/, Accessed 15 June 2018.
25. Devabhaktuni, V., Alam, M., Depuru, S. S. S. R., Green, R. C., Nims, D., & Near, C. (2013). Solar Energy: Trends and Enabling Technologies. Renewable and Sustainable Energy Review, 19, 555-564.
26. Goda, A. M. A-S., Essa, M. A., Hassaan, M. S., Sharawy, Z. (2015). Bio Economic Features for Aquaponic Systems in Egypt. Turkish Journal of Fisheries and Aquatic Sciences, 15, 525-532.
27. Johns, J. (2014). Hydroponics—A Beginners Guide to Growing Food Without Soil:Grow Delicious Fruits and Vegetables Hydroponically in Your Home.
28. National Aeronautics and Space Administration (2018). Goddard Institute for Space Studies. GISS Surface Temperature Analysis. Available from https://data.giss.nasa.gov/gistemp/, Accessed 28 February 2018.
29. Rakocy, J. E., Bailey, D. S., Shultz, R. C., Thoman, E. S. (2004). Update on tilapia and Vegetable Production in the UVI Aquaponic System. In: New Dimensions on Farmed Tilapia: Proceedings of the Sixth International Symposium on Tilapia in Aquaculture, 676-690.
30. Rakocy, J. E., Masser, M. P., Losordo, T. M. (2006). Recirculating Aquaculture Tank Production Systems: Aquaponics—Integrating Fish and Plant Culture. Southern Regional Aquaculture Center (SRAC) Publication, No.454.
31. Rinehart, L. (2010). Aquaponics—Integration of Hydroponics with Aquaculture. ATTRA—National Sustainable Agriculture Information Service. (本篇文章在2006年由NCAT 農業專家Diver, S.發表初版,2010年由同單位專家Rinehart, Lee 編輯後發行於ATTRA之刊物)
32. Sawyer, T. (2016). Aquaponics and Greenhouse Pioneers Partnership. The Aquaponic Source. Available from https://www.theaquaponicsource.com/blog/aquaponics-greenhouse-pioneers-partnership/, Accessed 15 April 2018.
33. Tokunaga, K., Tamaru, C., Ako, H., Leung, P. S. (2015). Economics of Small-scale Commercial Aquaponics in Hawai‘i. Journal of the World Aquaculture Society, 46, 1, 20-32. |