![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:25 、訪客IP:18.191.74.140
姓名 陳慧玲(Hui-Ling Chen) 查詢紙本館藏 畢業系所 統計研究所 論文名稱
(KMV and Maximum Likelihood Methods for Structural Credit Risk Models: Evidence from Taiwan Market)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在信用風險管理的文獻上,KMV模型是最被廣泛應用於Merton (1974)模型的方法之一。然而,KMV估計值的分配性質仍未被廣泛瞭解及探討,而MLE估計值則是具有良好的統計性質,進而對估計的參數進行統計推論。本篇文章在Duan et al. (2004)的架構下,利用蒙地卡羅模擬來驗證KMV及MLE的估計結果是相近的。我們同時利用台灣市場的資料來驗證KMV及MLE方法在Merton (1974)模型下對公司違約機率估計的正確率。雖然用實證資料在兩個方法下計算出來的違約機率略有不同,但所預測的正確率是相近的。我們發現不論在KMV或MLE方法下,Merton (1974)的模型正確率可達60%。然而,這是在違約前一季做預測所需的公司資料並未完整的結果,若可取得完整的資料,我們預期模型正確率將可進一步提高。 摘要(英) KMV method is a popular commercial implementation of Merton’’s (1974) structural credit risk model. It is found in recent academic papers, but it is not clear as to whether it is statistically sound. Unlike the MLE method, the KMV method is speechless with the distributional properties of the estimates and it is unsuited for statistical inference. We follow Duan et al. (2004) to verify that the KMV estimate is identical to the MLE estimate in Merton’’s (1974) model. Moreover, we perform the Monte Carlo simulation to show that the estimations of KMV and MLE are alike. We also use the data from Taiwan market to examine the accuracy of Merton’’s (1974) model by both KMV and MLE methods. We find that Merton’’s (1974) model provides about 60% of accuracy ratio no matter the KMV or MLE method is emplyed in predicting the default probabilities of Taiwan companies. It is notable that our result is somehow driven by the incompleteness for one-quarter prediction. If we are able to complement the missing data, we could expect to have an accuracy ratio higher than 60%. 關鍵字(中) ★ 模型預測正確率
★ KMV
★ 違約機率
★ 最大概似估計法
★ Merton模型關鍵字(英) ★ KMV
★ Merton's model
★ MLE
★ accuracy ratio
★ default probability論文目次 1 Introduction…………………………………………………………1
2 The KMV and maximum likelihood estimates (MLE) under Merton's (1974)Model…………………………………………………3
2.1 Merton (1974) model……………………………………………3
2.2 The KMV estimation………………………………………………6
2.3 The transformed-data maximum likelihood estimation (MLE)……………………………………………………………………8
2.4 The simulation of the KMV and MLE methods………………12
2.4.1 The KMV method………………………………………………13
2.4.2 The MLE method………………………………………………14
2.4.3 The comparison of the KMV and MLE method……………15
2.4.4 The simulation results of the KMV and MLE method…16
3 Data description and empirical methods……………………18
3.1 Data description………………………………………………18
3.2 Empirical methods and the testing design………………20
3.3 Evaluation of Probability Forecasts………………………21
4 Empirical results and discussion……………………………22
4.1 Analyses of model accuracy…………………………………22
4.1.1 Empirical results of the KMV method……………………22
4.1.2 Empirical comparison between KMV and MLE methods…26
4.2 Analyses of model fitness……………………………………29
5 Conclusions…………………………………………………………31
References……………………………………………………………32
Appendix………………………………………………………………34參考文獻 Brockman, P. and H. Turtle (2003), A Barrier Option Framework for Corporate Security Valuation, Journal of Financial Economics 67, 511-529.
Black, F., and M. Scholes (1973), The Pricing of Options and Corporate Liabilities, Journal of Political Economy 81, 637-659.
Bharath, S.T. and T. Shumway (2004), Forecasting Default with the KMV-Merton Model, Working Paper.
Crosbie, P. and J. Bohn (2003), Modeling Default Risk, Moody's KMV technical document.
Dempster, A., N. Laird, and D. Rubin (1977), Maximum-Likelihood from Incomplete Data Via the EM Algorithm, Journal of the Royal Statistical Society B 39, 1-38.
Duan, J.C. (1994), Maximum Likelihood Estimation Using Price Data of the Derivative Contract, Mathematical Finance 4, 155-167.
Duan, J.C. (2000), Correction: Maximum Likelihood Estimation Using Price Data of the Derivative Contract, Mathematical Finance 10, 461-462.
Duan, J.C., G. Gauthier, J.G. Simonato and S. Zaanoun (2003), Estimating Merton's Model by Maximum Likelihood with Survivorship Consideration, University of Toronto working paper.
Duan, J.C., G. Gauthier and J.G. Simonato (2004), On the Equivalence of the KMV and Maximum Likelihood Methods for Structural Credit Risk Models, Working Paper.
Ericsson, J. and J. Reneby (2005), Estimating Structural Bond Pricing Models, Journal of Business 78, 707-735.
Diebold, F.X. and G.D. Rudebusch (1989), Scoring the Leading Indicators, Journal of Business 62, 369-391.
Hull, J.C. (2003), Option, Futures, and Other Derivatives, Fifth Edition, Prentice Hall.
Lo, A. W. (1986), Statistical Tests of Contingent-Claims Asset-Pricing Models: A New Methodology, Journal of Financial Economics 17, 143-173.
Merton, R. (1974), On the Pricing of Corporate Debt: the Risk Structure of Interest Rates, Journal of Finance 28, 449-470.
Vassalou, M. and Y. Xing (2004), Default Risk in Equity Returns, Journal of Finance 59, 831-868.
Wong, H. and T. Choi (2004), The Impact of Default Barrier on the Market Value of Firm's Asset, Chinese University of Hong Kong working paper.指導教授 張傳章、鄭光甫
(Chuang-Chang Chang、Kuang-Fu Cheng)審核日期 2007-7-9 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare