![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:83 、訪客IP:18.191.89.16
姓名 朱泰民(Tai-Min Chu) 查詢紙本館藏 畢業系所 生物醫學工程研究所 論文名稱 發展非侵入式即時交感神經活性指標之量測系統
(Developing an Integrated System for Noninvasive Assessment of Real-time Sympathetic Nerve Activities)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 傳統檢測交感神經系統(sympathetic nervous system)的方法為心率變異度分析(Heart Rate Variability, HRV),或是使用微神經造影技術(Microneurography),將探針插入皮膚下交感神經末梢來檢測其變化。前者雖然在臨床上使用較普遍,但是分析心電圖(Electrocardiography, ECG)所需紀錄時間較長,且分析上不易得到交感神經之活性變化。後者雖然為臨床上交感神經量測標準之一,但是由於探針為侵入式的方法,會造成量測者一定的痛苦,並無法普遍的使用。
先前研究已提出即時且非侵入式量測交感神經活性的方法,透過量測體表上的心電圖,經由高通濾波器濾波後即可得到皮膚交感神經活性(Skin Sympathetic Nerve Activity, SKNA)。本論文提出一個有效分析SKNA訊號的方法,多尺度波動分析法(Multi Scale Fluctuation Analysis, MSFA),以多尺度動態趨勢法為基礎,可以分析SKNA訊號在不同尺度上波動的變化。此方法利用台大醫院加護病房(Intensive Care Unit, ICU)所蒐集術後病人的ECG資料,利用Matlab 數學軟體進行分析SKNA訊號的波動變化,可以驗證術後病人在交感神經調控的差異。另外本論文也提出利用不同量測儀器來蒐集ECG資料,利用先前研究提出的實驗方法,期望能以不同儀器量測SKNA訊號。摘要(英) Traditionally, sympathetic nervous system can be measured in two ways. The gold standard is highly invasive, which is well-known as Microneurography, utilizing the tungsten microelectrode to insert percutaneously into a sympathetic nerve to detect its electric activity. Since it will cause certain pain to the subject, it is not commonly applied for clinical diagnostic. On the other hand, the analysis of Heart Rate Variability (HRV), which measures the variation of the heart beat intervals, is more commonly used. However, it requires electrocardiograph (ECG) records of a long period of time, and the indexes are less related with sympathetic activities.
Previous studies have proposed a technique for simultaneous and non-invasive measurement of sympathetic activity. By measuring the electrocardiogram (ECG) on the body surface, the sympathetic nerve activity can be obtained by filtering ECG through a high-pass filter, which is called Skin Sympathetic Nerve Activity (SKNA). The thesis proposes a novel nonstationary approach to SKNA signal investigation, referred to as Multi Scale Fluctuation Analysis (MSFA). This method, based on the Multi Dynamic Trend Analysis (MDTA), can be applied by means of analyzing the fluctuation of SKNA signal under different scales. By using the Matlab mathematical software, MSFA validates the differences in sympathetic nerve regulation of postoperative patients. On the other hand, this thesis also attempted to use different instrument to measure ECG signal in order to detect SKNA signal, other than previous studies.關鍵字(中) ★ 心電圖
★ 皮膚交感神經活性
★ 多尺度波動分析法
★ 多尺度動態趨勢分析法關鍵字(英) ★ Electrocardiography(ECG)
★ Skin Sympathetic Nerve Activity(SKNA)
★ Multi Scale Fluctuation Analysis (MSFA)
★ Multi Dynamic Trend Analysis (MDTA)論文目次 目錄
摘要 i
Abstract iii
致謝 v
附圖目錄 ix
附表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 文獻探討 3
1.4 研究目的 5
第二章 研究原理 8
2.1 心電圖 8
2.1.1 心電圖簡介 8
2.1.2 心電圖原理 8
2.1.3 心電圖訊號架構 10
2.1.4 心電圖電極貼法 11
2.2 生理訊號複雜度簡介 15
第三章 研究方法介紹 16
3.1 心率變異度 16
3.1.1 心率變異度原理 16
3.1.2 時域分析 16
3.1.3 頻域分析 17
3.2 多尺度動態趨勢分析法 19
3.2.1 經驗模態分析法 20
3.2.2 多尺度平移分析法 26
3.3 多尺度波動分析法 28
第四章 實驗結果分析 31
4.1 皮膚交感神經活性量測實驗 31
4.1.1 實驗設備 31
4.1.2 實驗流程 32
4.1.3 實驗結果 33
4.2 iSKNA訊號複雜度分析 40
4.2.1 MDTA法分析iSKNA 40
4.2.2 MSFA法分析iSKNA 41
4.3 統計分析 42
第五章 結論與未來展望 50
5.1 結論 50
5.2 未來展望 51
參考文獻 52參考文獻 [1] R. M.Bergstrom, “Physiology of the Autonomic Nervous System,” Acta Anaesthesiol. Scand., vol. 8, no. 4, pp. 17–20, 1964.
[2] L.Politano, A.Palladino, G.Nigro, M.Scutifero, andV.Cozza, “Usefulness of heart rate variability as a predictor of sudden cardiac death in muscular dystrophies,” Acta Myol., vol. 27, no. DEC., pp. 114–122, 2008.
[3] P.Palatini andS.Julius, “The role of cardiac autonomic function in hypertension and cardiovascular disease,” Curr Hypertens Rep, vol. 11, no. 3, pp. 199–205, 2009.
[4] I.Cygankiewicz andW.Zareba, “Heart rate variability,” Handb. Clin. Neurol., vol. 117, pp. 379–393, 2013.
[5] V. G.Macefield, “Sympathetic microneurography,” Handb. Clin. Neurol., vol. 117, pp. 353–364, 2013.
[6] A.Doytchinova et al., “Simultaneous noninvasive recording of skin sympathetic nerve activity and electrocardiogram,” Hear. Rhythm, vol. 14, no. 1, pp. 25–33, 2017.
[7] C.Liu, J.Wong, A.Doytchinova, P.Chen, andS.Lin, “Method for detection and quantification of non-invasive skin sympathetic nerve activity,” no. 1.
[8] R.Vetrugno, R.Liguori, P.Cortelli, andP.Montagna, “Sympathetic skin response,” Clin. Auton. Res., vol. 13, no. 4, pp. 256–270, 2003.
[9] J. W.Kantelhardt, S. A.Zschiegner, E.Koscielny-Bunde, A.Bunde, S.Havlin, andH. E.Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” 2002.
[10] Y.-C.Lin et al., “Novel application of multi dynamic trend analysis as a sensitive tool for detecting the effects of aging and congestive heart failure on heart rate variability,” Chaos An Interdiscip. J. Nonlinear Sci., vol. 26, no. 2, p. 023109, 2016.
[11] J.Malmivuo andR.Plonsey, “Principles and applications of bioelectric and biomagnetic field,” pp. 393–401, 1995.
[12] 吳香宜 吳瑞士, “運動訓練對心率變異度的影響,” 輔仁大學體育學刊, pp. 239–252, 2008.
[13] Task Force, “Heart Rate Variability. Standards of Measurement, Physiological Interpretation and Clinical Use,” Circulation, vol. 93, no. 5, pp. 1043–1065, 1996.
[14] N. E.Huang et al., “The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 454, no. 1971, pp. 903–995, 1998.
[15] S.DeWu, C. W.Wu, K. Y.Lee, andS. G.Lin, “Modified multiscale entropy for short-term time series analysis,” Phys. A Stat. Mech. its Appl., vol. 392, no. 23, pp. 5865–5873, 2013.
[16] Y.Li, W.Pan, K.Li, Q.Jiang, andG. Z.Liu, “Sliding Trend Fuzzy Approximate Entropy as a Novel Descriptor of Heart Rate Variability in Obstructive Sleep Apnea,” IEEE J. Biomed. Heal. Informatics, vol. 2194, no. 2, 2018.
[17] T. H.Everett, A.Doytchinova, Y. M.Cha, andP. S.Chen, “Recording sympathetic nerve activity from the skin,” Trends Cardiovasc. Med., vol. 27, no. 7, pp. 463–472, 2017.
[18] A.Doytchinova et al., “Expanded Methods and Results,” Hear. Rhythm, vol. 25, no. Vm, pp. 1–18, 2017.
[19] 梁文敏、葉懿諄, “第十七單元 邏輯斯迴歸分析 ( 四 ),” in SPSS軟體操作, pp. 139–141.
[20] 張香治,「利用經驗模態分解法即時分析心電訊號」,國立中央大學,碩士論文,民國97年。指導教授 羅孟宗(Men-Tzung Lo) 審核日期 2018-7-30 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare