![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:29 、訪客IP:13.58.11.68
姓名 林暐捷(Wei-Jie Lin) 查詢紙本館藏 畢業系所 能源工程研究所 論文名稱 MOCVD 行星式腔體之模型建立與傳輸現象分析
(Transport phenomenon analysis in MOCVD planetary reactor by the realistic numerical model)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
至系統瀏覽論文 ( 永不開放)
摘要(中) 氮化鎵半導體材料因為有相當高的能隙與電子遷移率而逐漸在各種半導體應用逐漸受到重視,其中包括紫外發光元件、高功率元件以及高頻率通訊元件,而金屬有機化學氣相沉積(Metal organic chemical vapor deposition, MOCVD)為生產此類薄膜的主要方法。MOCVD腔體的種類可分為垂直式與水平式兩種,其中水平行星式腔體因為生產之薄膜均勻性相當好且腔體製程條件相較於垂直式腔體較有彈性,成為目前較有潛力的腔體種類。過去數值模擬在腔體零組件設計、製程參數影響以及腔體內熱場設計的貢獻相當大。但由於行星式腔體載盤表面自轉與公轉的速度分佈相當複雜,需要透過重建網格或轉移觀察座標等相當複雜的方法建立數值模型,導致過去行星式腔體的數值模型必須忽略晶圓的行星式運動,而載盤表面之邊界條件使用與實際物理條件有差距的準穩態假設。本次研究的目標為建立以單一函數描述整個行星式腔體載盤速度邊界條件的三維暫態模型,並探討不同晶圓轉速與自轉旋轉方向對流場的影響。 摘要(英) Gallium nitride receives lots of attention in the application of deep ultraviolet, power device and high frequency community device because of the high energy band gap and high electron mobility. Metal organic chemical vapor deposition is an important method to produce GaN thin film. Planetary reactor becomes very popular because the thickness uniformity of the film which is produced by planetary reactor is very well and the process parameter in planetary chamber is wider than other chamber design. Numerical simulation is an important way to study the physical phenomenon in the MOCVD chamber. In the past 20 years, the numerical model of planetary reactor is assumed to be quasi-steady because the velocity boundary condition on the susceptor surface is very complicate. To apply this velocity boundary layer, the mesh of the numerical model needs to be rearranged during the iteration. In most of the planetary reactor numerical model, the wafer is assumed to be static to skip the problem which is caused by the moving wafer. In the is study, a time dependent function is used to describe the velocity distribution on the susceptor surface. By applying this function, the velocity boundary layer can be used without mesh rearrangement. The effects caused by different wafer rotation speed and direction is studied by the model build in this work. 關鍵字(中) ★ 金屬有機化學氣相沉積
★ 數值模擬
★ 行星式腔體
★ 氮化鎵關鍵字(英) ★ MOCVD
★ numerical model
★ planetary reactor
★ GaN論文目次 目錄 II
圖目錄 VII
表目錄 IX
摘要 X
ABSTRACT XI
第一章 緒論 1
1.1. 研究背景 1
1.2. 金屬有機化學氣相沉積 2
1.3. 氮化鎵化學反應 3
1.4. MOCVD之應用範圍 3
1.5. MOCVD腔體種類 5
1.6. 行星式腔體載盤與晶圓之模擬 7
1.7. 研究動機與目的 8
第二章 研究方法 11
2.1. 模型幾何 11
2.2. 物理系統與基本假設 11
2.3. 混合氣體材料性質 12
2.4. 氣相反應方程式 13
2.5. 表面吸附反應 15
2.6. 二維模型邊界條件 15
2.7. 三維模型邊界條件 16
2.8. 晶圓沉積速率計算 18
2.9. 三維暫態行星式緩衝區尺寸 19
第三張 數值方法 24
3.1. 網格配置與測試 24
3.2. 收斂誤差測試 24
3.3. 水平行星式腔體三維暫態模擬流程 25
第四章 結果與討論 29
4.1. 各模型結果比較 29
4.2. 晶圓自轉對流場之影響 30
4.3. 晶圓自轉轉向對流場之影響 31
第五章 結論與未來研究方向 40
5.1. 結論 40
5.2. 未來研究方向 41
參考文獻 42參考文獻 [1] M. G. Jacko and J. W. Price, The pyrolysis of trimethyl gallium. Can. J. Chem. 41, 1560 (1963)
[2] A. Thon, T. F. Kuech, High temperature adduct formation of trimethylgallium and ammonia. Appl. Phys. Lett. 69, 55 (1996)
[3] D. Sengupta, S. Mazumder, W. Kuykendall, S. A. Lowry, Combined ab initio quantum chemistry and computational fluid dynamics calculations for prediction of gallium nitride growth. J. Crystal Growth 279 369–382 (2005)
[4] G. T. Wang, J. R. Creighton, Complex formation of trimethylaluminum and trimethylgallium with ammonia: evidence for a Hydrogen-Bonded adduct. J. Phys. Chem. A, 110, 1094-1099 (2006)
[5] A. Pelekh, R. W. Carr, Gas-phase reaction of trimethylgallium and ammonia: experimental determination of the equilibrium constant and ab initio calculations. J. Phys. Chem. A 105, 4697-4701 (2001)
[6] S. Krumdieck, R. Ra, Growth rate and morphology for ceramic films by pulsed-MOCVD Surface and Coatings Technology 141 7-14 (2001) [7] M.A. Mastro, C.R. Eddy Jr., D.K. Gaskill, N.D. Bassim, J. Casey, A. Rosenberg, R.T. Holm, R.L. Henry, M.E. Twigg, MOCVD growth of thick AlN and AlGaN superlattice structures on Si substrates. J. Crystal Growth 287 610-614 (2006)
[8] P.M. Frijlink, J.L. Nicolas, H.P.M.M. Ambrosius, R.W.M. Linders, C. Waucquez and J.M. Marchal, The radial flow planetary reactor: low pressure versus atmospheric pressure MOVPE. J. Crystal Growth 115 203-210 (1991)
[9] M. Dauelsberg, L. Kadinski, Yu. N. Makarov, T. Bergunde, G. Strauch,
M. Weyers, Modeling and experimental verification of transport and deposition behavior during MOVPE of GaInP in the Planetary Reactor. J. Crystal Growth 208 85-92 (2000)
[10] D. Fahle, R. Puesche, M. Mukinovic, M. Dauelsberg, R. Schreiner,H. Kalisch, M. Heuken, A. Vescan, Deposition control during GaN MOVPE. CS MANTECH Conference, New Orleans, Louisiana, USA, May 13th - 16th (2013)
[11] Yu. E. Egorov, A. O. Galyukov, A. I. Zhmakin, 3D Adaptive unstructured grid solver: application to flow and GaAs deposition in the planetary reactor. High Performance Scientific and Engineering Computing (1999)
[12] J. Li, Z-Y Fei, Y-F Xu, JWang, B-F Fan, X-J Ma, G. Wang, Study on the optimization of the deposition rate of planetary GaN-MOCVD films based on CFD simulation and the corresponding surface model. R. Soc. open sci. 5: 171757. (2018)指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2018-8-14 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare