論文目次 |
摘要 ....................................................................................................................................... i
Abstract ................................................................................................................................ ii
誌謝辭 ................................................................................................................................. iii
目錄 ..................................................................................................................................... iv
表目錄 ................................................................................................................................. vi
第一章 緒論 ......................................................................................................................... 1
第二章 Copula ...................................................................................................................... 2
2.1 Copula 介紹 .......................................................................................................... 2
2.2 Copula 實作模型 .................................................................................................. 5
2.2.1 Copula 模型內邊際分配 ............................................................................ 6
2.2.2 Copula (Gamma, Gamma) 模型 ................................................................. 7
2.2.3 Copula (Gamma, Normal) 模型 ................................................................. 9
2.2.4 Copula (Gamma, Lognormal) 模型 .......................................................... 11
2.2.5 Copula (Gamma, Poisson) 模型 ............................................................... 13
2.2.6 Copula (Gamma, Negative Binomial) 模型 .............................................. 15
2.2.7 Copula (Bernoulli, Normal) 模型 ............................................................. 17
第三章 強韌實作模型 ........................................................................................................ 20
3.1 強韌Gamma-Gamma 模型 ................................................................................ 20
3.2 強韌Poisson-Negative Binomial 模型 ............................................................... 25
3.3 強韌Bivariate Negative Binomial 模型 ............................................................. 30
第四章 模擬研究 ............................................................................................................... 40
4.1 資料生成 ........................................................................................................... 40
4.2 Copula 模型相關性參數之影響 ......................................................................... 41
4.3 Gumbel Copula、Clayton Copula、Frank Copula 間之差異 .............................. 68
v
4.4 Copula 模型內邊際分配之影響 ......................................................................... 95
第五章 實例分析 ............................................................................................................. 134
第六章 結論 ..................................................................................................................... 137
參考文獻 ........................................................................................................................... 138 |
參考文獻 |
Clayton, D. G. (1978). A model for association in bivariate life tables and its application in
epidemiological studies of familial tendency in chronic disease incidence. Biometrika,
65, 141-151.
Fitzmaurice, G. M. and Laird, N. M. (1995). Regression models for a bivariate discrete and
continunous outcome with clustering. Journal of the American Statistical Association,
90, 845-852.
Frank, M. J. (1979). On the simultaneous associativity of F(x,y) and x+y-F(x,y).
Aequationes Mathematicae, 19, 194-226.
Gumbel, E. J. (1960). Disyribution des valeurs extremes en plusieurs dimensions.
Publications de l’Institut de Statistique de l’Universit?́ de paris, 9, 171-173.
Nelsen, R. B. (2006).An Introduction to Copulas , 2nd edition. USA: Springer.
Onken, A. and Panzeri, S. (2016). Mixed vine copulas as jointmodel of spike counts and local
field potentials. Paper presented at Advances in Neural Information Processing Systems
29, Barcelona, Spain.
Royall, R. M. and Tsou, T. S. (2003). Interpreting statistical evidence by using imperfect
models: robust adjust likelihood functions. Journal of the Royal Statistical Society,
Series B, 65, 391-404.
Sklar, A. (1959). Fonctions de répartition á n dimensions et leurs marges. Publications de
l’Institut de Statistique de l’Universit?́ de paris, 8, 229-231
Sklar, A. (1973). Random variables, joint distribution functions, and copulas. Kybernetika, 9,
449-460
Solis-Trapala, I. L. and Farewell, V. T. (2005). Regression analysis of overdispersed
correlated count data with subject specific covariate. Statistics in Medicine, 24, 2557-
2575.
139
Tsou, T. S. and Chen, C. H. (2008). Comparing several means of dependent population of
count-A parametric robust approach. Statistics in Medicine, 27, 2576-2585. |