博碩士論文 105225005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.135.18.100
姓名 何建興(Jian-Xing He)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 在模型錯誤下copula應用在迴歸分析時的正確性
(The validity of copula for regression when model assumptions fail)
相關論文
★ 不需常態假設與不受離群值影響的選擇迴歸模型的方法★ 用卜瓦松與負二項分配建構非負連續隨機變數平均數之概似函數
★ 強韌變異數分析★ 用強韌概似函數分析具相關性之二分法資料
★ 利用Bartlett第二等式來估計有序資料的相關性★ 相關性連續與個數資料之強韌概似分析
★ 不偏估計函數之有效性比較★ 一個分析相關性資料的新方法-複合估計方程式
★ (一)加權概似函數之強韌性探討 (二)影響代謝症候群短期發生及消失的相關危險因子探討★ 利用 Bartlett 第二等式來推論模型假設錯誤下的變異數函數
★ (一)零過多的個數資料之變異數函數的強韌推論 (二)影響糖尿病、高血壓短期發生的相關危險因子探討★ 一個分析具相關性的連續與比例資料的簡單且強韌的方法
★ 時間數列模型之統計推論★ 複合概似函數有效性之探討
★ 決定分析相關性資料時統計檢定力與樣本數的普世強韌法★ 檢定DNA鹼基替換模型的新方法 - 考慮不同DNA鹼基間的相關性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) Copula 是目前分析相關性資料時,常用的一種建構聯合分配函數的一種方法,其
優點在於可以便利地建構所需的聯合分配函數,但當Copula 模型假設錯誤時,其統計
推論的正確性卻鮮有人探討。本文主要的目的是在廣義線性模型下,探討當Copula 模
型假設錯誤時,其迴歸參數之估計量是否具有一致性,且能否提供正確的統計推論,
並與Gamma-Gamma 模型、Poisson-Negative Binomial 模型以及Bivariate Negative
Binomial 模型之結果做比對。
摘要(英) Copulas are popular and commonly used methods for constructing joint distribution
functions when analyzing correlated data. The advantage of Copulas is that one can easily
construct joint distribution functions with desired marginals. However, the validity of
inference based on Copulas under model misspecification is rarely investigated. The objective
of this paper is to examine the properties of the Copula-based estimates of the regression
parameters given that the assumptions of the Copula model fail. We also make comparisons
between several Copula models with other methods for analyzing bivariate correlated data.
關鍵字(中) ★ 相關性資料
★ 強韌概似函數
★ Copula
關鍵字(英) ★ correlated data
★ robust likelihood function
★ copula
論文目次 摘要 ....................................................................................................................................... i
Abstract ................................................................................................................................ ii
誌謝辭 ................................................................................................................................. iii
目錄 ..................................................................................................................................... iv
表目錄 ................................................................................................................................. vi
第一章 緒論 ......................................................................................................................... 1
第二章 Copula ...................................................................................................................... 2
2.1 Copula 介紹 .......................................................................................................... 2
2.2 Copula 實作模型 .................................................................................................. 5
2.2.1 Copula 模型內邊際分配 ............................................................................ 6
2.2.2 Copula (Gamma, Gamma) 模型 ................................................................. 7
2.2.3 Copula (Gamma, Normal) 模型 ................................................................. 9
2.2.4 Copula (Gamma, Lognormal) 模型 .......................................................... 11
2.2.5 Copula (Gamma, Poisson) 模型 ............................................................... 13
2.2.6 Copula (Gamma, Negative Binomial) 模型 .............................................. 15
2.2.7 Copula (Bernoulli, Normal) 模型 ............................................................. 17
第三章 強韌實作模型 ........................................................................................................ 20
3.1 強韌Gamma-Gamma 模型 ................................................................................ 20
3.2 強韌Poisson-Negative Binomial 模型 ............................................................... 25
3.3 強韌Bivariate Negative Binomial 模型 ............................................................. 30
第四章 模擬研究 ............................................................................................................... 40
4.1 資料生成 ........................................................................................................... 40
4.2 Copula 模型相關性參數之影響 ......................................................................... 41
4.3 Gumbel Copula、Clayton Copula、Frank Copula 間之差異 .............................. 68
v
4.4 Copula 模型內邊際分配之影響 ......................................................................... 95
第五章 實例分析 ............................................................................................................. 134
第六章 結論 ..................................................................................................................... 137
參考文獻 ........................................................................................................................... 138
參考文獻 Clayton, D. G. (1978). A model for association in bivariate life tables and its application in
epidemiological studies of familial tendency in chronic disease incidence. Biometrika,
65, 141-151.
Fitzmaurice, G. M. and Laird, N. M. (1995). Regression models for a bivariate discrete and
continunous outcome with clustering. Journal of the American Statistical Association,
90, 845-852.
Frank, M. J. (1979). On the simultaneous associativity of F(x,y) and x+y-F(x,y).
Aequationes Mathematicae, 19, 194-226.
Gumbel, E. J. (1960). Disyribution des valeurs extremes en plusieurs dimensions.
Publications de l’Institut de Statistique de l’Universit?́ de paris, 9, 171-173.
Nelsen, R. B. (2006).An Introduction to Copulas , 2nd edition. USA: Springer.
Onken, A. and Panzeri, S. (2016). Mixed vine copulas as jointmodel of spike counts and local
field potentials. Paper presented at Advances in Neural Information Processing Systems
29, Barcelona, Spain.
Royall, R. M. and Tsou, T. S. (2003). Interpreting statistical evidence by using imperfect
models: robust adjust likelihood functions. Journal of the Royal Statistical Society,
Series B, 65, 391-404.
Sklar, A. (1959). Fonctions de répartition á n dimensions et leurs marges. Publications de
l’Institut de Statistique de l’Universit?́ de paris, 8, 229-231
Sklar, A. (1973). Random variables, joint distribution functions, and copulas. Kybernetika, 9,
449-460
Solis-Trapala, I. L. and Farewell, V. T. (2005). Regression analysis of overdispersed
correlated count data with subject specific covariate. Statistics in Medicine, 24, 2557-
2575.
139
Tsou, T. S. and Chen, C. H. (2008). Comparing several means of dependent population of
count-A parametric robust approach. Statistics in Medicine, 27, 2576-2585.
指導教授 鄒宗山(Tsung-Shan Tsou) 審核日期 2018-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明