博碩士論文 105522101 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.117.75.226
姓名 陳彥蓁(Yen-Chen Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 應用於智慧牙刷姿態辨識的遞迴式機率神經網路
(A Recurrent Probabilistic Neural Network for Posture Recognition Applying to Smart Toothbrush)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 刷牙是預防各種口腔疾病的主要方法,但刷牙全面且時間足夠才能夠真正降低牙齒疾病發生率。現有的智慧牙刷相關研究,雖然能夠以刷牙時的姿態角辨識刷牙區域,但使用者的身高及牙刷擺放位置等因素無法確定,因此若使用固定的模型辨識,將導致姿態辨識精確度及穩定性不足,還有無法監測刷牙的正確性和完整度的缺點。本論文因此提出一個遞迴機率神經網路模型DRPNN,應用於智慧牙刷姿態辨識。DRPNN由系統中已存在的PNN模型抽取出適當的個人刷牙特徵建立,模型包含記憶神經單元,具有自適應能力,利用PSO演算法迭代調整參數至模型最佳狀態,實驗結果發現本論文所提出之DRPNN辨識模型,刷牙姿態辨識率可達到98.64%,透過增加遞迴記憶單元平均準確率可達到99.08%,平均辨識率比使用CNN模型辨識高16.2%,也比使用LSTM模型辨識高21.21%。模型大小遠小於CNN與LSTM神經網路模型,能夠於低成本嵌入式系統中進行即時刷牙姿態辨識,改善現有智慧牙刷成本過高、辨識精度低、和智慧化不足等缺失。
摘要(英) Tooth brushing is the main method to prevent various oral diseases, only if thorough and long enough tooth brushing can reduce the incidence of tooth disease. In the existing studies about smart toothbrush, the tooth brushing area can be recognized by the attitude angle during tooth brushing, but the user′s body height and toothbrush location factors are uncertain. Therefore, if a fixed model is used for recognition, the posture recognition accuracy and stability will be insufficient, and the tooth brushing correctness and integrity cannot be monitored. This paper proposes a Dynamic Recurrent Probability Neural Network (DRPNN) for smart toothbrush posture recognition. The DRPNN uses the existent Probability Neural Network model in system to extract appropriate personal tooth brushing feature establishment. The model has memory cell and adaptive capability. The parameters are tuned iteratively by using Particle Swarm Optimization algorithm to the optimum condition of model. The experimental results show that the tooth brushing posture recognition rate of the recognition model proposed by this study is 98.64%. The average accuracy rate is 99.08% after the recurrent unit is used. The average recognition rate is higher than the Convolutional Neural Networks (CNN) model by 16.2%, and higher than the long short-term memory (LSTM) model by 21.21%. The model size is much smaller than the CNN and LSTM neural network models. The real-time tooth brushing posture recognition can be implemented in low cost embedded system. The deficiencies in the existing smart toothbrush can be remedied, such as high cost, low recognition accuracy and insufficient intelligence.
關鍵字(中) ★ 智慧牙刷
★ 姿態辨識
★ 遞迴式機率神經網路
關鍵字(英)
論文目次 摘 要 I
Abstract II
誌 謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章、緒論 1
1.1 研究背景 1
1.2 研究目的 4
1.3 論文架構 5
第二章、文獻回顧 6
2.1 卡爾曼濾波器 6
2.2 姿態角表示法 8
2.2.1 尤拉角 8
2.2.2 四元數 14
2.3 高效率姿態估算演算法 17
2.3.1 姿態估算 17
2.4 深度神經網路序列學習 20
2.4.1 卷積神經網路 20
2.4.2 遞迴神經網路 21
2.4.3 長短期記憶模型 22
2.5 機率神經網路 25
2.6 粒子群最佳化演算法 29

第三章、嵌入式刷牙姿態神經網路辨識系統設計 31
3.1 刷牙姿態辨識演算法設計 32
3.1.1 坐標系統 33
3.1.2 辨識特徵 34
3.1.3 模型遷移 37
3.1.4 遞迴機率神經網路 38
3.1.5 自適應機率神經網路 39
3.2 嵌入式高階系統設計方法論 39
3.2.1 IDEF0系統架構 40
3.2.2 GRAFCET 42
3.3 刷牙姿態神經網路辨識系統IDEF0 44
3.3.1 感測器資料融合模組 45
3.3.2 改良式機率神經網路辨識模組 46
3.3.3 個人化遞迴機率神經網路辨識模組 47
3.4 刷牙姿態神經網路辨識系統GRAFCET 48
3.4.1 感測器資料融合GRAFCET 50
3.4.2 改良式機率神經網路GRAFCET 52
3.4.3 個人化遞迴機率神經網路辨識GRAFCET 53
3.5 系統合成 54
第四章、實驗結果與分析 55
4.1 嵌入式軟硬體開發平台 55
4.1.1 STM32F7單晶片微控制器 55
4.1.2 慣性感測器 57
4.1.3 micro SD 卡 58
4.1.4 檔案系統 60
4.1.5 Keil開發工具 60
4.1.6 Unity 61
4.2 智慧牙刷相關資料庫建立 61
4.2.1 通用模型刷牙資料庫 62
4.2.2 區域刷牙資料庫 64
4.2.3 刷牙個人化模型資料庫 64
4.3 卡爾曼濾波實驗 65
4.4 實驗評比指標介紹 69
4.5 比較之深度神經網路 70
4.6 深度學習實驗平台 71
4.6.1 Tensorflow深度學習框架 71
4.7 CNN刷牙姿態辨識實驗 72
4.8 LSTM刷牙姿態辨識實驗 76
4.9 自適應DRPNN與DPNN刷牙姿態辨識實驗 80
4.10 刷牙完整度評估 83
4.11 實驗總結與演算法討論 87
第五章、結論與未來展望 89
5.1 結論 89
5.2 未來展望 90
參考文獻 91
參考文獻 [1] P. I. Eke, B. Dye, L. Wei, G. Thornton-Evans, and R. Genco, "Prevalence of periodontitis in adults in the United States: 2009 and 2010," Journal of dental research, vol. 91, no. 10, pp. 914-920, 2012.
[2] A. D. A. D. o. Science, "Tackling tooth decay," The Journal of the American Dental Association, vol. 144, no. 3, p. 336, 2013.
[3] J. Gibson and A. B. Wade, "Plaque removal by the Bass and Roll brushing techniques," Journal of periodontology, vol. 48, no. 8, pp. 456-459, 1977.
[4] M. Poyato‐Ferrera, J. Segura‐Egea, and P. Bullón‐Fernández, "Comparison of modified Bass technique with normal toothbrushing practices for efficacy in supragingival plaque removal," International journal of dental hygiene, vol. 1, no. 2, pp. 110-114, 2003.
[5] G. der Weijden Van, M. Timmerman, A. Nijboer, M. Lie, and U. der Velden Van, "A comparative study of electric toothbrushes for the effectiveness of plaque removal in relation to toothbrushing duration. Timerstudy," Journal of clinical periodontology, vol. 20, no. 7, pp. 476-481, 1993.
[6] F. Van der Weijden, M. Timmerman, I. Snoek, E. Reijerse, and U. Van der Velden, "Toothbrushing duration and plaque removing efficacy of electric toothbrushes," American journal of dentistry, vol. 9, pp. S31-6, 1996.
[7] U. Saxer, J. Barbakow, and S. Yankell, "New studies on estimated and actual toothbrushing times and dentifrice use," The Journal of clinical dentistry, vol. 9, no. 2, pp. 49-51, 1998.
[8] D. Beals, T. Ngo, Y. Feng, D. Cook, D. Grau, and D. Weber, "Development and laboratory evaluation of a new toothbrush with a novel brush head design," American journal of dentistry, vol. 13, no. Spec No, pp. 5A-14A, 2000.
[9] A. Gallagher et al., "The effect of brushing time and dentifrice on dental plaque removal in vivo," American Dental Hygienists Association, vol. 83, no. 3, pp. 111-116, 2009.
[10] G. McCracken, J. Janssen, M. Swan, N. Steen, M. De Jager, and P. Heasman, "Effect of brushing force and time on plaque removal using a powered toothbrush," Journal of clinical periodontology, vol. 30, no. 5, pp. 409-413, 2003.
[11] C. Insight, "Wearables momentum continues," [Online].Available: http://www.ccsinsight.com/press/company-news/2516-wearables-momentum-continues, 2016.
[12] A. Avci, S. Bosch, M. Marin-Perianu, R. Marin-Perianu, and P. Havinga, "Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: A survey," in International Conference on Architecture of Computing Systems, pp. 1-10, 2010.
[13] N. Bidargaddi, A. Sarela, L. Klingbeil, and M. Karunanithi, "Detecting walking activity in cardiac rehabilitation by using accelerometer," in IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing. , pp. 555-560, 2007.
[14] K.-H. Chen, P.-C. Chen, K.-C. Liu, and C.-T. Chan, "Wearable sensor-based rehabilitation exercise assessment for knee osteoarthritis," Sensors, vol. 15, no. 2, pp. 4193-4211, 2015.
[15] A. Tognetti et al., "Wearable kinesthetic system for capturing and classifying upper limb gesture in post-stroke rehabilitation," Journal of NeuroEngineering and Rehabilitation, vol. 2, no. 1, p. 8, 2005.
[16] W. H. Wu, A. A. Bui, M. A. Batalin, L. K. Au, J. D. Binney, and W. J. Kaiser, "MEDIC: Medical embedded device for individualized care," Artificial intelligence in medicine, vol. 42, no. 2, pp. 137-152, 2008.
[17] S. Jiang et al., "CareNet: an integrated wireless sensor networking environment for remote healthcare," in Proceedings of the ICST 3rd international conference on Body area networks, 2008.
[18] J. C. Hou et al., "Pas: A wireless-enabled, sensor-integrated personal assistance system for independent and assisted living," in IEEE Joint Workshop on High Confidence Medical Devices, Software, and Systems and Medical Device Plug-and-Play Interoperability, pp. 64-75, 2007.
[19] V. Osmani, S. Balasubramaniam, and D. Botvich, "Self-organising object networks using context zones for distributed activity recognition," in Proceedings of the ICST 2nd international conference on Body area networks, 2007.
[20] S. Bosch, M. Marin-Perianu, R. Marin-Perianu, P. Havinga, and H. Hermens, "Keep on moving! activity monitoring and stimulation using wireless sensor networks," in European Conference on Smart Sensing and Context, 2009.
[21] A. Marshall, O. Medvedev, and G. Markarian, "Self management of chronic disease using mobile devices and Bluetooth monitors," in Proceedings of the ICST 2nd international conference on Body area networks, 2007.
[22] M. Ermes, J. Pärkkä, J. Mäntyjärvi, and I. Korhonen, "Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions," IEEE transactions on information technology in biomedicine, vol. 12, no. 1, pp. 20-26, 2008.
[23] X. Long, B. Yin, and R. M. Aarts, "Single-accelerometer-based daily physical activity classification," in Engineering in Medicine and Biology Society. Annual International Conference of the IEEE, pp. 6107-6110, 2009.
[24] E. A. Heinz, K. S. Kunze, M. Gruber, D. Bannach, and P. Lukowicz, "Using wearable sensors for real-time recognition tasks in games of martial arts-an initial experiment," in IEEE Symposium on Computational Intelligence and Games, pp. 98-102, 2006.
[25] H. Markus, H. Takafumi, N. Sarah, and T. Sakol, "Chi-ball, an interactive device assisting martial arts education for children," in The ACM Conference on Extended Abstracts on Human Factors in Computing Systems, pp. 962-963, 2003.
[26] H. Huang and S. Lin, "Toothbrushing monitoring using wrist watch," in Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, pp. 202-215, 2016: ACM.
[27] J.-W. Lee, K.-H. Lee, K.-S. Kim, D.-J. Kim, and K. Kim, "Development of smart toothbrush monitoring system for ubiquitous healthcare," in Engineering in Medicine and Biology Society, 2006. EMBS′06. 28th Annual International Conference of the IEEE, pp. 6422-6425, 2006: IEEE.
[28] Y.-J. Lee et al., "Toothbrushing region detection using three-axis accelerometer and magnetic sensor," IEEE Transactions on Biomedical Engineering, vol. 59, no. 3, pp. 872-881, 2012.
[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Advances in neural information processing systems, pp. 1097-1105, 2012.
[30] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layer-wise training of deep networks," in Advances in neural information processing systems, pp. 153-160, 2007.
[31] G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural computation, vol. 18, no. 7, pp. 1527-1554, 2006.
[32] A.-r. Mohamed, G. E. Dahl, and G. Hinton, "Acoustic modeling using deep belief networks," IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 1, pp. 14-22, 2012.
[33] G. E. Dahl, D. Yu, L. Deng, and A. Acero, "Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition," IEEE Transactions on audio, speech, and language processing, vol. 20, no. 1, pp. 30-42, 2012.
[34] Z. Yu, Y. Rennong, C. Guillaume, and G. Maoguo, "Deep Residual Bidir-LSTM for Human Activity Recognition Using Wearable Sensors," arXiv preprint arXiv:1708.08989, 2017.
[35] K. Li, X. Zhao, J. Bian, and M. Tan, "Sequential learning for multimodal 3D human activity recognition with Long-Short Term Memory," in IEEE International Conference on Mechatronics and Automation pp. 1556-1561, 2017.
[36] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, "Deep learning for sensor-based activity recognition: A survey," arXiv preprint arXiv:1707.03502, 2017.
[37] O. D. Lara and M. A. Labrador, "A survey on human activity recognition using wearable sensors," IEEE Communications Surveys and Tutorials, vol. 15, no. 3, pp. 1192-1209, 2013.
[38] J. Yang, M. N. Nguyen, P. P. San, X. Li, and S. Krishnaswamy, "Deep Convolutional Neural Networks on Multichannel Time Series for Human Activity Recognition," in IJCAI, pp. 3995-4001, 2015.
[39] F. J. Ordóñez and D. Roggen, "Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition," Sensors, vol. 16, no. 1, p. 115, 2016.
[40] T. Zimmermann, B. Taetz, and G. Bleser, "IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning," Sensors, vol. 18, no. 1, p. 302, 2018.
[41] R. E. Kalman, "A new approach to linear filtering and prediction problems," Journal of basic Engineering, vol. 82, no. 1, pp. 35-45, 1960.
[42] 彭俊霖, "無人運動載具精密六軸慣性姿態感測系統的設計與實作," 國立雲林科技大學電機工程系碩士班, 2007.
[43] 帕贝里, 3D 数学基础: 图形与游戏开发. 清华大学出版社有限公司, 2005.
[44] H. Harrison, "Quaternions and Rotation Sequences: a Primer with Applications to Orbits, Aerospace and Virtual Reality, Kuipers JB, Princeton University Press, 41 William Street, Princeton, NJ 08540, USA. 1999. 372pp. Illustrated.£ 35.00. ISBN 0-691-05872-5," The Aeronautical Journal, vol. 103, no. 1021, pp. 175-175, 1999.
[45] J. M. Cooke, M. J. Zyda, D. R. Pratt, and R. B. McGhee, "NPSNET: Flight simulation dynamic modeling using quaternions," Presence: Teleoperators & Virtual Environments, vol. 1, no. 4, pp. 404-420, 1992.
[46] S. O. Madgwick, A. J. Harrison, and R. Vaidyanathan, "Estimation of IMU and MARG orientation using a gradient descent algorithm," in Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on, pp. 1-7, 2011: IEEE.
[47] M. Abadi et al., "TensorFlow: A System for Large-Scale Machine Learning," in OSDI, vol. 16, pp. 265-283, 2016.
[48] T. Mikolov, M. Karafiát, L. Burget, J. Černocký, and S. Khudanpur, "Recurrent neural network based language model," in Eleventh Annual Conference of the International Speech Communication Association, 2010.
[49] F. A. Gers, J. Schmidhuber, and F. Cummins, "Learning to forget: Continual prediction with LSTM," 1999.
[50] D. F. Specht, "Probabilistic neural networks," Neural networks, vol. 3, no. 1, pp. 109-118, 1990.
[51] 吳曜瑋, "應用於智能牙刷的六軸運動辨識; Six-Axis Motion Recognition Applying to Smart Toothbrush," 國立中央大學, 2016.
[52] R. Poli, J. Kennedy, and T. Blackwell, "Particle swarm optimization," Swarm intelligence, vol. 1, no. 1, pp. 33-57, 2007.
[53] C.-H. Chen, M.-Y. Lin, and X.-C. Guo, "High-level modeling and synthesis of smart sensor networks for Industrial Internet of Things," Computers & Electrical Engineering, vol. 61, pp. 48-66, 2017.
[54] DolphinWing, "感測器原理," [Online].Available: https://goo.gl/fSzsrF, 2009.
[55] 永虹, 炜, 立平, and 郝, STM32 系列 ARM Cortex-M3 微控制器原理与实践. 北京航空航天大学出版社, 2008.
[56] Z. Cui, W. Chen, and Y. Chen, "Multi-scale convolutional neural networks for time series classification," arXiv preprint arXiv:1603.06995, 2016.
[57] Y. Chen, K. Zhong, J. Zhang, Q. Sun, and X. Zhao, "Lstm networks for mobile human activity recognition," in International Conference on Artificial Intelligence: Technologies and Applications. ICAITA, 2016.
指導教授 陳慶瀚 審核日期 2018-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明