![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:18 、訪客IP:3.144.230.138
姓名 李世懿(Shih-yi Li) 查詢紙本館藏 畢業系所 數學系 論文名稱 分布函數之反函數之核估計的模擬研究
(A Simulation Study for Kernel Estimator of Inverse Distribution Function)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 分布函數為機率上重要的分析工具,其重要性不亞於機率密度函數及特徵函數。在統計上分布函數也有很多應用,令$F$表一分布函數,則$F^{-1}$可用於隨機變數之模擬及穩定型分布(stable distribution)之冪數(exponent)的估計。通常分布函數是未知的,必需用樣本估計。分布函數未知時,常用之分布函數的估計式為經驗分布(empirical distribution function)。本文之目的為研究$F^{-1}$的估計,但上述經驗分布卻因其反函數不存在,故不能直接運用。本文提出$F^{-1}(y)$之核估計式$widehat{F}^{-1}(y)$,因此式之機率性質非常複雜,故本文將以電腦模擬方式研究$widehat{F}^{-1}(y)$之漸近一致性(asymptotic consistency)及漸近常態性(asymptotic normality)。 摘要(英) The inverse function of a distribution function has many applications in statistics. In practice, the inverse function is unknown and has to be estimated. The purpose of this paper is to discuss a kernel estimator $widehat{F}^{-1}(y)$ of the inverse function $F^{-1}(y)$ of a distribution function $F(x)$. Since the theoretical property of $widehat{F}^{-1}(y)$ is extremely complicated, we will investigate the asymptotic consistency and asymptotic normality of $widehat{F}^{-1}(y)$ via computer simulations. 關鍵字(中) ★ 分布函數之反函數
★ 核估計關鍵字(英) ★ inverse distribution function
★ kernel estimator論文目次 中文摘要...........................................i
英文摘要..........................................ii
致謝辭...........................................iii
目錄..............................................iv
1 簡介.............................................1
2 常態數據之模擬結果...............................5
3 柯西數據之模擬結果...............................8
4 羅吉斯數據之模擬結果............................11
5 模擬結果之比較..................................14
6 結論............................................15
參考文獻..........................................16
附錄一............................................18
附錄二............................................23
附錄三............................................28
附錄四............................................33參考文獻 [1] 周宗翰(2007). 單峰穩定型分布之冪數的經驗分布及核密度函數估計法。中央大學數學研究所碩士論文。
[2] Alexander,K.S.(1984). Probability inequalities for empirical processes and a law of the iterated logarithm. Ann. probab.12,1041-1067.
[3] Bolthausen,E.(1978). Weak convergence of an empirical process indexed by the closed convex subsets of $I^2$. Z. Wahrsch. Verw. Gebiete,43,173-181.
[4] Chow,Y.S. and Teicher,H.(1997). Probability Theory. 3rd ed. Springer.
[5] Chung,K.L.(2001). A Course in Probability Theory. 3rd ed. Academic Press.
[6] Dahlhaus,R.(1988). Empirical spectral processes and their application to time series analysis. Stochastic Processes. Appl. ,30,69-83.
[7] Dudlry,R.M.(1978). Central limit theorems for empirical measures. Probab.6,899-929.
[8] Dudlry,R.M.(1984). Acourse on empirical processes. Lecture Notesin Math.1097,1-142. Springer, New York.
[9] Eddy,R.M. and Hartigan,J.A.(1977). Uniform convergence of the empirical distribution function over convex sets. Ann. Statist,5,370-374.
[10] Pettitt,A.N.(1979). Testing for bivariate normality using the empirical distribution function. Comm. Statist. A-Theory Methods,8,699-712.
[11] Prakasa Rao,B.L.S.(1983). Nonparametric Functional Estimation Academic Press.
[12] Shorack,G.R. and Wellner,J.A.(1986). Empirical Processes with Applications to Statistics.Wiley,New York.
[13] Silverman,B.W.(1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall.
[14] Sorensen,H.(2002). Estimation of diffusion parameters for discretely observed diffusion processes. Bernoulli,8,491-508.
[15] Tapia,R.A. and Thompson,J.R.(1977). Nonparametric Probability Density Estimation. Johns Hopkins University Press.指導教授 許玉生(Yu-sheng Hsu) 審核日期 2008-6-29 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare