![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:20 、訪客IP:18.191.28.129
姓名 潘軒毅(Pan, Hsuan-Yi) 查詢紙本館藏 畢業系所 能源工程研究所 論文名稱 冷媒R-245fa於不同石墨烯塗佈鰭管上凝結熱傳性能之實驗分析 相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
至系統瀏覽論文 ( 永不開放)
摘要(中) 石墨烯具有高化學穩定性及高耐久性的特點,所以可將石墨烯塗
佈在熱傳表面上形成疏水性表面。然而對於低表面張力的液體,塗佈
石墨烯無法形成滴狀冷凝以提升熱傳性能,但實際上塗佈石墨烯仍達
到接觸角提升與表面能降低的效果。本研究使用化學氣相層積法
(CVD),將石墨烯與氟化石墨烯塗佈至純銅鰭管表面上以提升冷凝熱
傳性能,並將測試鰭管置於本實驗室設計之可視化冷凝實驗系統中,
透過量測工作流體 R-245fa 之管外冷凝熱傳係數及觀察冷凝液滯留在
鰭片間距的情形,比較一般鰭管表面、石墨烯表面與氟化石墨烯表面
的差異。期望透過增加接觸角,在鰭片壁面上的未淹沒區域有更少的
冷凝液滯留使熱傳面積增加以提升熱傳性能。摘要(英) Graphene has the features of high chemical stability and high
durability, so graphene can be coated on heat transfer surface to form
hydrophobic surface. However, for liquid with low surface tension,
graphene coating can’t form drop condensation to improve heat transfer
performance. But in fact, graphene coating still can reach the contact
angle increasing and surface energy reducing effect. This study adopts
Chemical Vapor Deposition (CVD) to make graphene and fluorinated
graphene be coated on pure copper integral fin tube surface to improve
condensation heat transfer performance and also put the test integral fin
tube in the visible condensation experiment system that is designed by
this laboratory to compare differences between general integral fin tube
surface, graphene surface and fluorinated graphene surface through
measuring the outside condensation heat transfer coefficient of the
working fluid R-245fa and observing the status of condensate between
fins. It’s expected that the drainage area on fin flank has less condensate
by increasing the contact angle so that heat transfer area can be increased
to improve heat transfer performance.關鍵字(中) ★ 石墨烯
★ 氟化石墨烯
★ 鰭管
★ 冷凝熱傳性能
★ R-245fa關鍵字(英) 論文目次 目錄
摘要......................................................................................................... I
ABSTRACT ........................................................................................... II
目錄.......................................................................................................III
表目錄...................................................................................................VI
圖目錄................................................................................................. VII
符號說明...............................................................................................XI
第一章、前言.........................................................................................1
1.1 研究背景與動機 ..............................................................................1
1.2 研究目的..........................................................................................3
第二章、文獻回顧 .................................................................................7
2.1 凝結熱傳機構 ..................................................................................7
2.2 鰭片上的凝結熱傳...........................................................................8
2.3 疏水性表面的凝結熱傳.................................................................13
2.4 石墨烯表面的凝結熱傳.................................................................15
2.5 結語.................................................................................................17
第三章、實驗方法 ...............................................................................33
IV
3.1 測試段............................................................................................33
3.1.1 鰭片間距設計...........................................................................33
3.1.2 表面處理 ..................................................................................34
3.2 實驗系統........................................................................................34
3.2.1 環路系統 ..................................................................................35
3.2.2 加熱系統 ..................................................................................35
3.2.3 冷卻水系統 ..............................................................................35
3.3 實驗數據擷取系統.........................................................................36
3.3.1 溫度量測 ..................................................................................36
3.3.2 壓力量測 ..................................................................................36
3.3.3 流量量測 ..................................................................................37
3.3.4 量測項目擷取...........................................................................37
3.3.5 冷媒液滴成長影像擷取...........................................................37
3.3.6 接觸角量測儀與拉曼光譜檢測裝置與其原理.........................38
3.4 實驗方法........................................................................................39
3.4.1 系統測漏 ..................................................................................39
3.4.2 系統內不凝結氣體排除...........................................................40
3.4.3 系統內冷媒填充.......................................................................40
V
3.4.4 實驗操作步驟...........................................................................41
3.5 實驗數據換算 ................................................................................43
3.5.1 冷媒熱力物理性質...................................................................43
3.5.2 測試銅管內熱傳量計算...........................................................43
3.5.3 冷卻水熱傳係數計算 ...............................................................44
3.5.4 冷凝熱傳係數與銅管表面過冷溫度計算 ................................46
第四章、實驗結果與討論....................................................................58
4.1 拉曼光譜檢測與冷媒接觸角量測 .................................................58
4.2 一般銅管外冷凝熱傳係數.............................................................59
4.3 鰭管外冷凝熱傳係數.....................................................................60
4.3.1 不同鰭片間距一般鰭管表面冷凝熱傳係數............................60
4.3.2 氟化石墨烯表面、石墨烯表面冷凝熱傳係數之比較 ............61
第五章、結論.......................................................................................82
參考文獻...............................................................................................83
附錄.......................................................................................................87
A.實驗誤差分析 ...................................................................................87
B.各儀器校正曲線................................................................................89參考文獻 [1] J.G. Collier, J.R. Thome, 2001, “Convective boiling and
condensation,” Third Edition, Oxford University Press.
[2] D.J. Preston, D.L. Mafra, N. Miljkovic, J. Kong, E.N. Wang, 2015,
“Scalable graphene coatings for enhanced condensation heat
transfer,” Nano Letter, 15, 2902−2909.
[3] 謝献慶,2016,石墨烯塗佈銅管外凝結熱傳性能研究,國立中
央大學能源工程研究所碩士論文。
[4] K. Zulfa,2017,Condensation heat transfer of refrigerant R-245fa
on graphene coating integral fin-tubes,國立中央大學能源工程研
究所碩士論文。
[5] W. Nusselt, 1916. quoted in: B. Memory, 1991, “Free convection
laminar film condensation on a horizontal tube with variable wall
temperature,” International Journal of Heat and Mass Transfer, 34,
2775–2778.
[6] W.M. Rohsenow, 1956. quoted in: A.F. Mills, R.A. Seban, 1967,
“The condensation coefficient of water,” International Journal of
Heat and Mass Transfer, 10, 1815–1827.
[7] R.L. Webb, 1994, “Principles of enhanced heat transfer,” Second
Edition, Taylor & Francais Group.
[8] H. Honda, N. Takata, H. Takamatsu, J.S. Kim, K. Usami, 2002,
“Condensation of downward-flowing HFC134a in a staggered
bundle of horizontal finned tubes : effect of fin geometry ´
84
coulement descendant dans Condensation de HFC134a en e un
faisceau horizontal de tubes ailetes en quinconce : effet de ´ ometrie
des ailet, ” International Journal of Refrigeration, 25, 3–10.
[9] J.R. Thome, 2007, “Condensation on external surfaces,” Wolverin
Tube Inc.
[10] A. Briggs, J.W. Rose, 1994, “Effect of fin efficiency on a model for
condensation heat transfer on a horizontal, integral-fin tube,”
International Journal of Heat and Mass Transfer, 37, 457–463.
[11] S. Namasivayam, A. Briggs, 2005, “Condensation of ethylene
glycol on integral-fin tubes: Effect of fin geometry and vapor
velocity,” ASME Journal of Heat Transfer, 127, 1197–1206.
[12] R. Kumar, A. Gupta, S. Vishvakarma, 2005, “Condensation of
R-134a vapour over single horizontal integral-fin tubes: Effect of
fin height,” International Journal of Refrigeration, 28, 428–435.
[13] S.K. Sajjan, R. Kumar, A. Gupta, 2015, “Experimental
investigation during condensation of R-600a vapor over single
horizontal integral-fin tubes,” International Journal of Heat and
Mass Transfer, 88, 247–255.
[14] H. Masuda, J.W. Rose, 1987, “Static configuration of liquid films
on horizontal tubes with low radial fins: Implications for
condensation heat transfer,” Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 410, 125–139.
[15] J.W. Rose, 2004, “Surface tension effects and enhancement of
condensation heat transfer,” Chemical Engineering Research and
Design, 82, 419–429.
85
[16] K.O. Beatty, D.L. Katz, 1948. quoted in: J.W. Rose, 1994, “An
approximate equation for the vapour-side heat-transfer coefficient
for condensation on low-finned tubes,” International Journal of
Heat and Mass Transfer, 37, 865–875.
[17] R.L. Webb, T.M. Rudy, M.A. Kedzierski, 1985, “Prediction of the
condensation coefficient on horizontal integral-fin tubes,” ASME
Journal of Heat Transfer, 107, 369-376.
[18] H. Honda, S. Nozu, 1987, “A prediction method for heat transfer
during film condensation on horizontal low integral-fin tubes,”
ASME Journal of Heat Transfer, 109, 218–225.
[19] T. Adamek, R.L. Webb, 1990, “Prediction of film condensation on
horizontal integral fin tubes,” International Journal of Heat and
Mass Transfer, 33, 1721-1735.
[20] S. Khandekar, K. Muralidhar, 2014, “Dropwise condensation on
inclined textured surfaces,” Springer.
[21] J. Rafiee, M.A. Rafiee, Z.Z. Yu, N. Koratkar, 2010,
“Superhydrophobic to superhydrophilic wetting control in graphene
films,” Advanced Materials, 22, 2151–2154.
[22] J.W. Rose, 2002, “Dropwise condensation theory and experiment: a
review” Proc Instn Mech Engrs, 216, 115-128.
[23] S. Vemuri, K.J. Kim, B.D. Wood, S. Govindaraju, T.W. Bell, 2006,
“Long term testing for dropwise condensation using self-assembled
monolayer coatings of n-octadecyl mercaptan,” Applied Thermal
Engineering, 26, 421–429.
[24] A.T. Paxson, J.L. Yagüe, K.K. Gleason, K.K. Varanasi, 2013,
86
“Stable dropwise condensation for enhancing heat transfer via the
initiated chemical vapor deposition (iCVD) of grafted polymer
films,” Advanced Materials, 26, 418-423.
[25] H.O. Pierson, 1992, “Handbook of chemical vapour deposition,”
Noyes Publications.
[26] E.M. Sparrow, S.H. Lin, 1964, “Condensation heat transfer in the
presence of a noncondensable gas,” ASME Journal of Heat Transfer,
86, 430-436.
[27] V. Gnielinski, 1976. quoted in: F.P. Incropera, D.P. Dewitt, 1996,
“Fundamentals of heat mass transfer,” Forth Edition, John Wiley &
Sons.
[28] B.S. Petukhov, 1970. quoted in: F.P. Incropera, D.P. Dewitt, 1996,
“Fundamentals of heat mass transfer,” Forth Edition, John Wiley &
Sons.
[29] 李至誠,2017,不同流道形式之蒸發熱交換器的熱傳性能研究,
國立中央大學機械工程研究所碩士論文。指導教授 楊建裕 審核日期 2019-1-30 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare