國立中央大學108 學年度碩士班考試入學試題

所別: 光電類

共2頁 第1頁

科目: 電子學

本科考試可使用計算器,廠牌、功能不拘

本試題共四大題計算題。計算題需計算過程,無計算過程者不予計分

- 1. Design an active filter. According to Fig. 1, please answer the following questions.
- 2% (a) Please give the types of filter corresponding to the circuits shown in Fig. 1(a) and 1(b).
- (b) If $R_1 = R_2 = R_3 = R_4 = 100 \,\Omega$ and $C_1 = C_2 = 1 \,\mu$ F, please give the transfer functions $\mathbf{H}_1(\omega)$ and $\mathbf{H}_2(\omega)$ for Fig. 1(a) and 1(b) and draw the corresponding magnitude Bode plots for each transfer function.
 - 6% (c) Design task 1: Design an active band-pass filter with central frequency at 1000 rad/s and a maximum gain of 5 at the central frequency. Please give the circuit of this band-pass filter and the value of each element.
- 3% (d) According to the circuit designed in (c), please give its transfer function and explain why this circuit can match the goal in (c).
- 6% (e) Design task 2: Design an active non-inverting low-pass filter with corner frequency at 1000 rad/s and a gain of 5 within the passband. Please give the circuit of this band-pass filter and the value of each element.
- 3% (f) What are the differences between passive and active filter? Please list the differences as more as possible

- 5% 2. Please give the reason why close-loop gain is preferred rather than open-loop gain for using Op Amp?
- 15% 3. Use Op Amp circuit to synthesize a signal $s(t) = 4\cos(1000t) 5\cos(500t) 2\cos(100t)$ with three given signal sources $\cos(1000t)$, $\cos(500t)$ and $\cos(100t)$. According to the circuit in Fig. 2, please give the values of R_1 , R_2 and R_3 , and three inputs of $v_1(t)$, $v_2(t)$ and $v_3(t)$ to achieve the output of s.

國立中央大學108學年度碩士班考試入學試題

所別: 光電類

共2頁 第2頁

科目: 電子學

本科考試可使用計算器,廠牌、功能不拘

- 4. Consider the circuit shown in Fig. 3. The parameters are β = 180, , and the Early voltage $V_A = \infty$, $\upsilon_{o1} = \upsilon_{o2} = 2\,\mathrm{V}$ and $\upsilon_{o4} = 6\,\mathrm{V}$ when $\upsilon_1 = \upsilon_2 = 0\,\mathrm{V}$.
- 5% (a) Determine the values of V_1 and V_2 ;
- 5% (b) Determine the value of I_R ;
- 5% (c) Determine the values of I_1 and I_2 , and explain the reason in details;
- 5% (d) Determine the value of R_{c1} ;
- 5% (e) Determine the value of R_{c2} ;
- 5% (f) Determine the voltage gain $A_{\nu} = \frac{v_{04}}{v_2}$;
- (g) Determine the differential-mode voltage gain $A_{d1} = \frac{(\upsilon_{01} \upsilon_{02})}{(\upsilon_1 \upsilon_2)}$;
- (h) Determine the differential-mode voltage gain $A_d \equiv \frac{v_{04}}{(v_1 v_2)}$.

Fig. 3:

注意:背面有試題