科目

普通化學_____類組別____A7

共2頁第1頁

一、單選題 (每題 4 分,答錯不倒扣)

元素原子量: H=1, D=2, C=12, N=14, O=16, F=19, Na=23, S=32, Cl=35.5, P=31, K=39, Ca=40, Mn=55, Fe=55.85, Br=80, Rb=85.5, I=127; Faraday constant=96500 Cmol⁻¹, Gas constant R=8.314 J K⁻¹ mol⁻¹; 5.189×10¹⁹ eV K⁻¹ mol⁻¹ or 0.082 L atm K⁻¹ mol⁻¹, Plank Constant h=6.626× $10^{-34} \, \text{J} \cdot \text{s}$

- [1]. Which of the following pairs is incorrect?
 - A) NH₄Br, ammonium bromide
 - B) K₂CO₃, potassium carbonate
 - C) BaPO₄, barium phosphate
 - D) CuCl, copper(I) chloride
 - E) MnO₂, manganese (IV) oxide
- [2]. Rutherford's experiment was important because it showed that:
 - A) radioactive elements give off alpha particles.
 - B) gold foil can be made to be only a few atoms thick.
 - C) a zinc sulfide screen scintillates when struck by a charged particle.
 - D) the mass of the atom is uniformly distributed throughout the atom.
 - an atom is mostly empty space.
- [3]. The atomic mass of rhenium is 186.2. Given that 37.1% of natural rhenium is rhenium-185, what is the other stable isotope?

A)
$$^{183}_{75}$$
 Re , B) $^{187}_{75}$ Re , C) $^{189}_{75}$ Re , D) $^{181}_{75}$ Re , E) $^{190}_{75}$ Re

[4]. The following reactions

$$2K(s) + Br_2(l) \rightarrow 2KBr(s)$$

$$AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$$

$$HCl(aq) + KOH(aq) \rightarrow H_2O(l) + KCl(aq)$$

are examples of

- A) precipitation reactions.
- B) redox, precipitation, and acid-base, respectively.
- C) precipitation (two) and acid-base reactions, respectively.
- D) redox reactions.
- E) none of these

科目	普通化學	類組別	A7	共 <u>2</u> 頁	第 <u>2</u> 頁
----	------	-----	----	--------------	--------------

- [5]. A 0.307-g sample of an unknown triprotic acid is titrated to the third equivalence point using 35.2 mL of 0.106 M NaOH. Calculate the molar mass of the acid.
 - A) 247 g/mol
 - B) 171 g/mol
 - C) 165 g/mol
 - D) 151 g/mol
 - E) 82.7 g/mol
- [6]. Consider two organic molecules, ethanol and benzene. One dissolves in water and the other does not. Why?
 - A) They have different molar masses.
 - B) One is ionic, the other is not.
 - C) One is an electrolyte, the other is not.
 - D) Ethanol contains a polar O—H bond, and benzene does not.
 - E) Two of these.
- [7]. Calculate the density of nitrogen at STP.
 - A) 0.312 g/L
 - B) 0.625 g/L
 - C) 0.800 g/L
 - D) 1.25 g/L
 - E) 1.60 g/L
- [8]. The van der Waals equation, $nRT = [P + (n^2a/V^2)] (V nb)$, incorporates corrections to the ideal gas law in order to account for the properties of real gases. One of the corrections accounts for
 - A) the possibility of chemical reaction between molecules.
 - B) the finite volume of molecules.
 - C) the quantum behavior of molecules.
 - D) the fact that average kinetic energy is inversely proportional to temperature.
 - E) the possibility of phase changes when the temperature is decreased or the pressure is increased.
- [9]. A 25.0 g piece of aluminum (which has a molar heat capacity of 24.03J/°Cmol) is heated to 82.4°C and dropped into a calorimeter containing water (specific heat capacity of water is 4.18J/g°C) initially at 22.3°C. The final temperature of the water is 24.9°C. Calculate the mass of water in the calorimeter.
 - A) 118 g
 - B) 6.57 g
 - C) 3180 g
 - D) 2120 g
 - E) none of these

台灣聯合大學系統 108 學年度學士班轉學生考試試題

科目_	普通化學	類組別	A7	·	共 <u>2</u>	_頁	第3	頁

[10]. Calculate the lattice energy for MgO(s) using a Born-Haber cycle and the following information:

- A) +1842 kJ/mol
- B) +2444 kJ/mol
- C) +3844 kJ/mol
- D) +4108 kJ/mol
- [11]. While mercury is very useful in barometers, mercury vapor is toxic. Given that mercury has a $\Delta H_{\rm vap}$ of 59.11 kJ/mol and its normal boiling point is 356.7°C, calculate the vapor pressure in mm Hg at room temperature, 25°C.
 - A) $2.68 \times 10^{-3} \text{ mm Hg}$
 - B) 2.99 mm Hg
 - C) 372 mm Hg
 - D) 753 mm Hg
- [12]. At a given temperature the vapor pressures of benzene and toluene are 183 mm Hg and 59.2 mm Hg, respectively. Calculate the total vapor pressure over a solution of benzene and toluene with Xbenzene = 0.400.
 - A) 110 mm Hg
 - B) 133 mm Hg
 - C) 109 mm Hg
 - D) 242 mm Hg

台灣聯合大學系統 108 學年度學士班轉學生考試試題

科目 普通化學

類組別____A7___

共 2 頁 第 4 頁

[13]. A concentration-time study of the gas phase reaction 2 $A_3 \rightarrow 3$ A_2 produced the data in the table below.

Time (s)	$[A_3](M)$	$[A_2](M)$
0	4.00×10^{-4}	0
10	2.00×10^{-4}	3.00×10^{-4}
20	1.00×10^{-4}	4.50×10^{-4}
30	5.00×10^{-5}	?

What is the average rate of formation of A₂ in the time interval 20-30 seconds?

- A) $6.00 \times 10^{-4} \text{ M/s}$
- B) 5.25×10^{-5} M/s
- C) 7.50×10^{-6} M/s
- D) 6.00×10^{-6} M/s

[14]. The following set of data was obtained by the method of initial rates for the reaction:

$$BrO_3(aq) + 5 Br(aq) + 6 H^+(aq) \rightarrow 3 Br_2(aq) + 3 H_2O(l)$$
.

Calculate the initial rate when BrO_3 is 0.30 M, Br is 0.050 M, and H^+ is 0.15 M.

Expt	[BrO ₃ -] (M)	[Br-] (M)	[H+] (M)	Rate (M/s)
1	0.10	0.10	0.10	8.0 x 10-4
2	0.20	0.10	0.10	1.6 x 10-3
3	0.20	0.15	0.10	2.4 × 10-3
4	0.10	0.10	0.25	5.0 x 10-3

- A) 6.1×10^{-5} M/s
- B) 2.7×10^{-3} M/s
- C) 5.3×10^{-2} M/s
- D) $8.4 \times 10^{-2} \text{ M/s}$
- [15]. The first-order isomerization reaction: cyclopropane \rightarrow propene, has a rate constant of 1.10 \times 10⁻⁴ s ⁻¹ at 470°C and an activation energy of 264 kJ/mol. What is the temperature of the reaction when the rate constant is equal to 4.36×10^{-3} s⁻¹?
 - A) 126°C
 - B) 411°C
 - C) 510°C
 - D) 540°C

注意:背面有試題

科目___普通化學

類組別___A7

共 2 頁 第 5 頁

[16]. Nitric oxide reacts with oxygen to form nitrogen dioxide:

$$2 \text{ NO}(g) + O_2(g) \rightleftharpoons 2 \text{ NO}_2(g)$$

What is $K_{\rm C}$ ' for the reverse reaction if the equilibrium concentration of NO is 0.300 M, O_2 is 0.200 M, and NO_2 is 0.530 M at 25°C?

- A) 0.0340
- B) 0.0641
- C) 0.624
- D) 15.6
- [17]. The decomposition of ammonia is: $2 \text{ NH}_3(g) \rightarrow N_2(g) + 3 \text{ H}_2(g)$. If K_p is 1.5×10^3 at 400°C , what is the partial pressure of ammonia at equilibrium when N_2 is 0.10 atm and H_2 is 0.15 atm?
 - A) 2.2×10^{-7} atm
 - B) 4.7×10^{-4} atm
 - C) 2.1×10^3 atm
 - D) 4.4×10^{6} atm
- [18]. For acid solutions of the same molarity acid strength is proportional to the equilibrium concentration of $\rm H_3O^+$. For equimolar solutions of acids, which equilibrium expression below corresponds to the strongest acid?

A)
$$K_C = \frac{[H_3O^+][F^-]}{[HF]} = 3.5 \times 10^{-4}$$

B)
$$K_c = \frac{[H_3O^+][OO^+]}{[HOO]} = 3.5 \times 10^{-8}$$

C)
$$K_{\rm C} = \frac{[{\rm H_3O^+}] [{\rm NO_2}^-]}{[{\rm HNO_2}]} = 4.5 \times 10^{-4}$$

D)
$$K_c = \frac{[H_3O^+][CN^-]}{[HCN]} = 4.9 \times 10^{-10}$$

[19]. What is the strongest Brønsted-Lowry acid in the chemical reaction shown below?

$$2 \text{ HNO}_3(aq) + \text{Ba(OH)}_2(aq) \rightarrow \text{Ba(NO}_3)_2(aq) + 2 \text{ H}_2\text{O(l)}$$

- A) HNO₃
- B) Ba(OH)₂
- C) Ba(NO₃)₂
- D) H₂O

台灣聯合大學系統 108 學年度學士班轉學生考試試題

科目 普通化學

類組別___A'

共<u>力</u>頁 第<u>6</u>頁

[20]. If the ionization constant of water, $K_{\rm W}$, at 40°C is 2.92×10^{-14} , then what is the hydronium ion concentration for a neutral solution?

A)
$$[H_3O^+] < 1.00 \times 10^{-7} M$$

B)
$$[H_3O^+] > 1.71 \times 10^{-7} M$$

C)
$$[H_3O^{\dagger}] = 1.71 \times 10^{-7} M$$

D)
$$[H_3O^+] < 1.71 \times 10^{-7} M$$

[21]. What is the balanced equation for the galvanic cell reaction expressed using shorthand notation below?

$$Mg(s) \mid Mg^{2+}(aq) \mid Cl_2(g) \mid Cl(aq) \mid C(s)$$

A)
$$Mg(s) + 2 Cl(aq) \rightarrow Mg^{2+}(aq) + Cl_2(g)$$

B)
$$Mg(s) + Cl_2(g) \rightarrow Mg^{2+}(aq) + 2 Cl(aq)$$

C)
$$Mg^{2+}(aq) + 2 Cl(aq) \rightarrow Mg(s) + Cl_2(g)$$

D)
$$Mg^{2+}(aq) + 2 Cl(aq) \rightarrow MgCl_2(s)$$

[22]. The nickel-cadmium battery cell has a standard potential of +1.20 V. The cell reaction is

$$2 \operatorname{NiO(OH)}(s) + \operatorname{Cd}(s) + 2 \operatorname{H}_2\operatorname{O}(l) \to 2 \operatorname{Ni(OH)}_2(s) + \operatorname{Cd(OH)}_2(s).$$

What is the standard free energy change for this reaction?

- A) -38.7 kJ
- B) -116 kJ
- C) -232 kJ
- D) -463 kJ

[23]. Consider the following table of standard reduction potentials:

Reduction Half-Reaction	E ⁰ (V)	
$A^+ + e^- \rightarrow A$	0.70	
$B^{2^+} + 2 e^- \rightarrow B$	0.43	
$C_3 + 3 e^- \rightarrow 3 C^-$	0.27	

Which substance is the strongest reducing agent?

- A) A
- B)B
- C) C₃
- D) C

台灣聯合大學系統 108 學年度學士班轉學生考試試題 科目 普通化學 類組別 共<u>2</u>頁第<u>2</u>頁 [24]. Beta decay of ²⁴Na produces a beta particle and A) ²⁰F.
B) ²³Na.
C) ²⁴Ne. D) ²⁴Mg. [25]. Iodine-123, used in thyroid therapy, has a half-life of 13.27 hours. How many half-lives are required for a 160 mg sample of iodine-123 to decay to 5.0 mg? A) 0.031 B) 1.0 C) 5.0 D) 32