博碩士論文 106426031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.221.242.128
姓名 蔡億霖(Yi-Lin TSAI)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 利用貝氏網路分析肺癌患者使用標靶藥物與其他藥物之交互作用
(Analysis of the interaction between target drugs and other drugs in lung cancer patients using Bayesian network)
相關論文
★ 非小細胞肺癌患者第一線藥物之多目標分析- 醫療成效與成本
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自2009年來,標靶藥物用於治療晚期非小細胞肺癌的比率逐年提高,標靶藥物的出現雖為患者帶來希望,但長期的治療效果與潛在的風險,仍有待觀察。隨著其他疾病的發生,藥物種類的使用量也隨之增加,有些研究認為某些特定的疾病藥物會影響患者使用標靶藥物的效果,然而至今醫學上還有許多藥物尚未被證實會影響標靶藥物的療效,然而針對藥物之間的相互影響,醫學上大多以臨床或生物實驗為主,然而健保資料庫的出現為醫療上的數據分析帶來新的發展,期望能從大量的數據中獲取對醫療上有幫助的信息,而醫療上常見的分析手法有存活分析、多變量分析和貝式網路模型。
我們使用台灣健保資料庫去進行數據分析,健保資料庫具備數據量大且整合了病患長期的就醫資料等優勢,我們以標靶藥物為第一線藥物的肺癌患者為主要分析對象,整理患者在治療肺癌期間與其他藥物的使用情況,並透過建構貝式網路來尋找影響患者惡化的潛在原因,並探討病人在不同情況下使用不同種藥物所導致惡化的原因。
摘要(英) Since 2009, the ratio of target drugs for the treatment of advanced non-small cell lung cancer has increased year by year. Although the targeted drugs have brought hope to patients, the effect of long therapeutic procedure and potential risks remain to be observed. With the occurrence of other diseases, the use of drug types has also increased. Some studies believe that certain specific disease drugs will affect the effect of patients using target drugs. However, there are still many drugs in medicine that have not been confirmed to affect the efficacy of target drugs. And for the interaction of drugs, most of the medicines are mainly clinical or biological experiments. However, the rise of the health insurance database has brought new developments in medical data analysis. It is expected to obtain medically helpful
information from a large amount of data. The common analytical methods in medical practice include survival analysis, multivariate analysis, and bayesian network
models.
We use the National Health Insurance Research Database for data analysis. The health insurance database has the advantages of numerous data and integration of long-term medical information of patients. We focus on the patients with lung cancer who use target drugs as first-line drugs. And summary the use of other drugs during the treatment of lung cancer. Through the construction of Bayesian network to find potential causes of deterioration. Discuss the reasons for the deterioration of patients using different drugs in different situations.
關鍵字(中) ★ 肺癌
★ 貝氏網路
★ 健保資料庫
關鍵字(英) ★ Lung Cancer
★ Bayesian Network
★ National Health Insurance Research Database
論文目次 摘要 i
Abstract ii
Contents iii
Chapter 1 Introduction - 1 -
1-1 Research background - 1 -
1-2 Research motivation: - 2 -
1-3 Research objectives - 3 -
1-4 Research environment - 3 -
Chapter 2 Literature review - 6 -
2-1 Bayesian Network - 6 -
2-2 Lung cancer - 6 -
2-3 SAS HPBNET procedure - 7 -
2-4 Bayesian Information Criterion - 8 -
Chapter 3 Methodology - 9 -
3-1 Bayesian network - 9 -
3-2 HPBNET procedure - 13 -
Chapter 4 Result - 15 -
4-1 Data Process - 15 -
4-2 Data Analysis - 17 -
Chapter 5 Conclusion and Future Work - 25 -
Reference - 27 -
參考文獻 [1] Cheng, Jie, and Russell Greiner. "Comparing Bayesian network classifiers." Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 1999.
[2] Cheng, Jie, and Russell Greiner. "Learning bayesian belief network classifiers: Algorithms and system." Conference of the Canadian Society for Computational Studies of Intelligence. Springer, Berlin, Heidelberg, 2001.
[3] Fei Wang, and John Amrhein. "Bayesian Networks for Causal Analysis." McDougall Scientific Ltd. 2776,2018.
[4] Flesch, Ildikó, and Peter JF Lucas. "Markov equivalence in Bayesian networks." Advances in Probabilistic Graphical Models. Springer, Berlin, Heidelberg, 2007. 3-38.
[5] Friedman, Nir, Dan Geiger, and Moises Goldszmidt. "Bayesian network classifiers." Machine learning 29.2-3 (1997): 131-163.
[6] Jayasurya, K., et al. "Comparison of Bayesian network and support vector machine models for two‐year survival prediction in lung cancer patients treated with radiotherapy." Medical physics 37.4 (2010): 1401-1407.
[7] Lucas, Peter JF, Linda C. Van der Gaag, and Ameen Abu-Hanna. "Bayesian networks in biomedicine and health-care." Artificial intelligence in medicine 30.3 (2004): 201-214.
[8] Lucas, Peter. "Bayesian analysis, pattern analysis, and data mining in health care." Current opinion in critical care 10.5 (2004): 399-403.
[9] Margaritis, Dimitris. Learning Bayesian network model structure from data. No. CMU-CS-03-153. Carnegie-Mellon Univ Pittsburgh Pa School of Computer Science, 2003.
[10] Neath, Andrew A., and Joseph E. Cavanaugh. "The Bayesian information criterion: background, derivation, and applications." Wiley Interdisciplinary Reviews: Computational Statistics 4.2 (2012): 199-203.
[11] Oh, Jung Hun, et al. "A Bayesian network approach for modeling local failure in lung cancer." Physics in Medicine & Biology 56.6 (2011): 1635.
[12] Wang, Kung-Jeng, Jyun-Lin Chen, and Kung-Min Wang. "Medical expenditure estimation by Bayesian network for lung cancer patients at different severity stages." Computers in biology and medicine 106 (2019): 97-105.
[13] Weber, Philippe, et al. "Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas." Engineering Applications of Artificial Intelligence 25.4 (2012): 671-682.
[14] Ye Liu, Weihua Shi, and Wendy Czika. "Building Bayesian Network Classifiers Using the HPBNET Procedure." SAS Institute Inc. 474,2017.
指導教授 曾富祥 枋岳甫(Fu-Shiang Tseng Yueh-Fu Fang) 審核日期 2019-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明