博碩士論文 106324601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.224.200.110
姓名 蓓達(Belda Amelia Junisu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以嵌段共聚物模板製備金納米結構藉由SERS光譜進行分子傳感
(Block-Copolymer Templated Gold Nanostructures for Molecular Sensing through SERS Spectroscopy)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用
★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用
★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 兩性高分子的自組裝奈米結構近來在奈米科學界上引起了相當程度的關注。將具有自組裝行為的高分子摻混金屬作為奈米結構模板有很廣的應用層面,例如表面增強拉曼散射(SERS)。表面增強拉曼散射(SERS)是一個偵測、追蹤許多無機及有機材料的重要工具。高分子的自組裝行為可以避免金奈米粒子發生團聚現象,此團聚現象在某種程度上會降低表面增強拉曼散射(SERS)的表現。有鑑於此,在此研究中,透過表面重組方法,以聚-2-乙烯基吡啶奈米微胞多層結構為材料(SR-PS-b-P2VP),利用嵌段高分子自組裝行為製備奈米多孔網狀結構。透過在氮氣氣氛下照紫外光的方法,使高分子模板穩定,減少金離子並且在高分子模板上形成金的晶種(GS-PS-b-P2VP)。並且利用後續成長方式製備金奈米結構。結果上來說,我們成功利用晶種成長方法透過軟質模板製備出相互交連的金骨架結構。以羅丹明6G分子在金基材為例,在1µM R6G濃度的情況下,表面增強拉曼散射(SERS)的增強因子大約為106;而10µM濃度的R6G,表面增強拉曼散射(SERS)的增強因子可以達到大約108。此結果證明,利用本實驗簡單且低成本的方式所製備出的金奈米結構,在表面增強拉曼散射(SERS)的相關應用上有優異的表現。
摘要(英) Self-assembled nanostructures from amphiphilic block copolymers have received interests in nanoscience and nanotechnology. Incorporating metals within self-assembled block-copolymer nanodomains as a template could form versatile and robust nanostructures with a broad range of applications, including surface-enhanced Raman scattering (SERS) enhancement. SERS is an important tool for the analytical, trace detection of many inorganic and organic materials. Self-assembly can avoid aggregation of gold nanostructures which could decrease its performance in some way. Hence, in this study, self-assembly of BCP was used to form nanoporous networks through surface reconstruction of micellar films of multilayer thickness (SR-PS-b-P2VP). UV irradiation in nitrogen (UVIN) was used to stabilize the template and to reduce the gold ions to form gold seeds (GS-PS-b-P2VP). Gold nanostructure (GN-PS-b-P2VP) were further formed through the growth approach. As a result, a straightforward seed-growth method allows the formation of gold interconnected frameworks through templating of the soft template. The corresponding enhancement factor of gold substrates using R6G as the model molecule are ~108 and ~106 folds for 10 µM and 1 µM R6G, respectively. Such results prove the excellent performance of gold nanostructure fabricated from a relatively simple and cost-effective method for high potential in SERS-related applications.
關鍵字(中) ★ Surface reconstruction
★ Self-assembly
★ PS-b-P2VP
★ Gold interconnected frameworks
★ SERS enhancement
關鍵字(英)
論文目次 Table of Contents
Chinese Abstract i
Abstract ii
Acknowledgement iii
Table of Contents iv
List of Figures vi
List of Tables xii
CHAPTER I 1
INTRODUCTION 1
CHAPTER II 5
LITERATURE REVIEW 5
2.1 Gold Nanostructure 5
2.1.1 Fabrication Methods of Gold Porous Nanostructures 6
2.1.2 Optical Properties of Gold Nanostructures 15
2.2 Raman Spectroscopy 19
2.2.1 Surface Enhanced Raman Scattering (SERS) 23
2.2.2 Surface Plasmon Resonance (SPR) 25
2.2.3 SERS Enhancement Factor 27
2.2.4 Possible SERS Substrates (Metallic Substrates) 30
2.2.5 Development of Au Metallic Substrates in SERS Applications 31
2.3 Self-Assembly Block Copolymer (BCP) 37
2.3.1 Micelle Formation in Bulk and Solution System 38
2.3.2 BCP as a Template on The Growth of Metal Nanostructure 40
2.3.3 The Development of BCP-Templated Gold Nanostructure 42
CHAPTER III 45
EXPERIMENTAL METHODS 45
3.1 Materials 45
3.2 Instruments 46
3.3 Experimental Section 47
3.4 Instrumental Analysis 50
3.4.1 Field Emission Scanning Electron Microscope (FE-SEM) 50
3.4.2 X-Ray Diffraction (XRD) 52
3.4.3 X-Ray Photoelectron Spectroscopy (XPS) 53
3.4.4 UV-Visible (UV-Vis) Spectroscopy 54
3.4.5 Transmission Electron Microscopy (TEM) 55
3.4.6 Atomic Force Microscopy 57
3.4.7 Surface Enhanced Raman Spectroscopy 58
CHAPTER IV 60
RESULTS AND DISCUSSION 60
4.1 Fabrication and Characterization of Polymer Template 61
4.2 Fabrication and Characterization of Gold Seeds 67
4.3 Growth and Characterization of Gold Nanostructure 75
4.4 SERS Performance of Dye Molecules Absorbed on Gold Nanostructures 86
CHAPTER V 97
CONCLUSION 97
REFERENCES 98
參考文獻 [1] Zhang, L.; Guan, C.; Wang, Y.; & Liao, J. Highly Effective and Uniform SERS Substrates Fabricated by Etching Multi-layered Gold Nanoparticle Arrays. Nanoscale. 2016, 8, 5928-5937.
[2] Liu, H.; Zhang, L.; Lang, X.; Yamaguchi, Y.; Iwasaki, H.; Inouye, Y.; Xue, Q.; & Chen, M. Single Molecule Detection from a Large-scale SERS-active Au79Ag21 Substrate. Scientific Reports. 2011, 1, 112.
[3] Yap, F.L.; Thoniyot, P.; Krishnan, S.; & Krishnamoorthy, S. Nanoparticle Cluster Arrays for High-Performance SERS through Directed Self-Assembly on Flat Substrates and on Optical Fibers. ACS Nano. 2012, 6(3), 2056-2070.
[4] Caceres, R. C.; Dawson, C.; Formanek, P.; Fischer, D.; Simon, F.; Janke, A.; Uhlmann, P. & Stamm, M. Polymers as Templates for Au and Au@Ag Bimetallic Nanorods: UV-Vis and Surface Enhanced Raman Spectroscopy. Chem. Mater. 2013, 25, 158-169
[5] Bhattacharjee, G.; Bhattacharya, M.; Roy, A.; Senapati, D. & Satpati, B. Core-Shell Gold@Silver Nanorods of Varying Length for High Surface-Enhanced Raman Scattering Enhancement. ACS Appl. Nano. Mater. 2018, 1, 10, 5589-5600.
[6] Banbury, C.; Rickard, J. J. S.; Mahajan, S. & Oppenheimer, P. G. Tunable Metamaterial-like Platforms for Surface Enhanced Raman Scattering via Three-Dimensional Block Copolymer Based Nanoarchitectures. ACS Appl. Mater. Interfaces. 2019. 11, 15, 14437-14444.
[7] Li, F.; Yao, X.; Wang, Z.; Xing, W.; Jin, W.; Huang, J. & Wang, Y. Highly Porous Metal Oxide Networks of Interconnected Nanotubes by Atomic Layer Deposition. Nano Lett. 2012, 12, 5033-5038
[8] Zheng, Y.; Wang, W.; Fu, Q.; Wu, M.; Shayan, K.; Wong, K. M.; Singh, S.; Schober, A.; Schaaf, P. & Lei, Y. Surface Enhanced Raman Scattering (SERS) Substrate Based on Large-Area Well-Defined Gold Nanoparticle Arrays with High SERS Uniformity and Stability. Chem. Plus Chem. 2014, 79, 11, 1622-1630
[9] Li, C.; Dag, Ö.; Dao, T. D.; Nagao, T.; Sakamoto, Y.; Kimura, T.,; Terasaki, O. & Yamauchi, Y. Electrochemical Synthesis of Mesoporous Gold Films toward Mesospace-Stimulated Optical Properties. Nat. Comm. 2015, 6, 6608.
[10] Cao, Wei. Gold Nanostructures with Superhydrophobic to Superhydrophilic Wetting Transition and Tunable SERS Applications Prepared by Galvanic Displacement. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 382, 022026
[11] Lu, Jennifer Q. and Yi, Sung Soo. Uniformly Sized Gold Nanoparticles Derived from PS-b-P2VP Block Copolymer Templates for the Controllable Synthesis of Si Nanowires. Langmuir. 2006, 22, 9.
[12] Chegel, V.; Rachkov, O.; Lopatynskyi, A.; Ishihara, S.; Yanchuk, I.; Nemoto, Y.; Hill, J. P. & Ariga, K. Gold Nanoparticles Aggregation: Drastic Effect of Cooperative Functionalities in a Single Molecular Conjugate. J. Phys. Chem. C. 2012, 116, 2683-2690.
[13] Ru, Eric Le and Etchegoin, Pablo. Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects. Amsterdam: Elsevier. 2009, 1st edition.
[14] Ma, C., Trujillo, Michael J. & Camden, J. P. Nanoporous Silver Film Fabricated by Oxygen Plasma: A Facile Approach for SERS Substrates. ACS Appl. Mater. Interfaces. 2016, 8, 23978-23984.
[15] Wang, X.; Wang, C.; Cheng, L.; Lee, S. T. & Liu, Z. Noble Metal Coated Single-Walled Carbon Nanotubes for Applications in Surface Enhanced Raman Scattering Imaging and Photothermal Therapy. J. Am. Chem. Soc. 2012, 134, 7414-7422
[16] Basu, Srismrita. Surface Enhanced Raman Scattering (SERS) Substrates and Probes. 2017. LSU Doctoral Dissertations. 4177.
[17] Murray, W. A.; Barnes, W. L.; Plasmonic Materials. Adv. Mater. 2007, 19, 3771-3782.
[18] Ujihara, M.; Dang, N. M. & Imae, T. Surface-Enhanced Resonance Raman Scattering of Rhodamine 6G in Dispersions and on Films of Confeito-Like Au Nanoparticles. Sensors. 2017, 17, 2563.
[19] Moskovits, M. Surface-Enhanced Raman Spectroscopy: A Brief Retrospective. J. Raman Spectrosc. 2005, 36, 485-496.
[20] Wang, Y.; Becker, M.; Wang, L.; Liu, J.; Scholz, R.; Peng, J.; Gösele, U.; Christianse, S.; Kim, D.H. & Steinhart, M. Nanostructrued Gold Films for SERS by Block Copolymer-Templated Galvanic Displacement Reactions. Nano Lett. 2009, 9, 6.
[21] Hsueh, H. Y.; Chen, H. Y.; Hung, Y. C.; Ling, Y. C.; Gwo, S. & Ho, R. M. Well-Defined Multibranched Gold with Surface Plasmon Resonance in Near-Infrared Region from Seeding Growth Approach Using Gyroid Block Copolymer Template. Adv. Mater. 2013, 25, 1780-1786.
[22] Zhang, Jintao and Li, Chang Ming. Nanoporous Metals : Fabrication Strategies and Advanced Electrochemical Applications in Catalysis, Sensing, and Energy Systems. Chem. Soc. Rev. 2012, 41, 7016-7031.
[23] Bhattarai, J. K.; Neupane, D.; Nepal, B.; Mikhaylov, V.; Demchenko, A.V. and Stine, K. J. Structure and Applications of Gold in Nanoporous Form, inside Noble and Precious Metals – Properties, Nanoscale Effects and Applications. London, UK: Intech Open, 2018.
[24] Ron, R.; Haleva, E. & Salomon, A. Nanoporous Metallic Networks: Fabrication, Optical Properties, and Applications. Adv. Mater. 2018, 1706755.
[25] Ding, Y.; Kim, Y. J. & Erlebacher, J. Nanoporous Gold Leaf: “Ancient Technology”/Advanced Material. Adv. Mater. 2004, 16, 21.
[26] Liu, W.; Herrmann, A. K.; Bigall, N. C.; Rodriguez, P.; Wen, D.; Oezaslan, M.; Schmidt, T. J.; Gaponik, N. & Eychmüller, A. Noble Metal Aerogels-Synthesis, Characterization, and Application as Electrocatalysts. Acc. Chem. Res. 2015, 48, 154-162.
[27] Ron, R.; Gachet, D.; Rechav, K. & Salomon, A. Direct Fabrication of 3D Metallic Networks and Their Performance. Adv. Mater. 2017, 29, 1604018.
[28] De Caro, Cosimo A. UV/VIS Spectrophotometry – Fundamentals and Applications. Metler Toledo. 2015.
[29] Tesler, A. B.; Chuntonov, L.; Karakouz, T.; Bendikov, T. A.; Haran, G.; Vaskevich, A. & Rubinstein, I. Tunable Localized Plasmon Transducers Prepared by Thermal Dewetting of Percolated Evaporated Gold Films. J. Phys. Chem. C. 2011, 115, 24642-24652.
[30] Zhao, F.; Zeng, J.; Arnob, M. M. P.; Sun, P.; Qi, J.; Motwani, P.; Gheewala, M.; Li, C. H.; Paterson, A.; Strych, U.; Raja, B.; Willson, R. C.; Wolfe, J. C.; Lee, R. & Shih, W. C. Monolithic NPG Nanoparticles with Large Surface Area, Tunable Plasmonics, and High-Density Internal Hot-spots. Nanoscale. 2014, 6, 8199-8207.
[31] Yin, Z.; Wang, Y.; Song, C.; Zheng, L.; Ma, N.; Liu, X.; Li, S.; Lin, L.; Li, M.; Xu, Y.; Li, W.; Hu, G.; Fang, Z. & Ma, D. Hybrid Au-Ag Nanostructures for Enhanced Plasmon-Driven Catalytic Selective Hydrogenation through Visible Light Irradiation and Surface-Enhanced Raman Scattering. J. Am. Chem. Soc. 2018, 140, 864-867.
[32] Wang, C.; Zhao, X. P.; Xu, Q. Y.; Younis, M. R.; Liu, W. Y.; Xia, X. H. Importance of Hot Spots in Gold Nanostructures on Direct Plamon Enhanced Electrochemistry. ACS Appl. Nano. Mat. 2018.1, 10, 5805-5811.
[33] McCreery, Richard L. Raman Spectroscopy for Chemical Analysis. Wiley-Interscience
[34] Israelsen, Nathan. Surface Enhanced Raman Spectroscopy-Based Biomarker Detection for B-Cell Malignancies. 2015. All Graduate Theses and Dissertations. 4605.
[35] Duyne, R. P. Van.; Jeanmaire, D. L.; Shriver, D. F.; Mode-locked laser Raman Spectroscopy – A new Technique for The Rejection of Interfering Background Luminescence Signals. Anal. Chem. 1974, 46, 213-222.
[36] Miles, R. B.; Lempert, W. R.; N. Forkey J. Laser Rayleigh Scattering. Meas. Sci. Technol. 2001, 12, R33-R51.
[37] Driskell, Jeremy Daniel. Surface-Enhanced Raman Scattering (SERS) for Detection in Immunoassays: Applications, Fundamentals, and Optimization. Retrospective Theses and Dissertations. 2006. 1932.
[38] Ameer, F. S.; Pittman, C. U. Jr. & Zhang, D. Quantification of Resonance Raman Enhancement Factors for Rhodamine 6G (R6G) in Water and on Gold and Silver Nanoparticles: Implications for Single-Molecule R6G SERS. J. Phys. Chem. C. 2013, 117, 27096-27104.
[39] Huang, J.; He, Z.; He, X.; Liu, Y.; Wang, T.; Chen, G.; Tang, C.; Jia, R.; Liu, L.; Zhang, L.; Wang, J.; Ai, X.; Sun, S.; Zu, X. & Du, K. Island-like Nanoporous Gold: Smaller Island Generates Stronger Surface-Enhanced Raman Scattering. ACS Appl. Mater. Interfaces. 2017, 9, 28902-28910.
[40] Sevenler, D.; Ünlü, L. & Ünlü M. S. Nanoparticle Biosensing with Interderometric Reftectance Imaging inside Nanobiosensor and Nanobioanalyses. Japan : Springer, 2015.
[41] He, Lili. Application of Surface Enhanced Raman Spectroscopy to Food Safety Issues. Dissertations. 2009.
[42] Willets, K. a. and Van Duyne, R.P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual. Rev. Phy. Chem. 2007, 58, 267-297.
[43] De Rooij, A. The Oxidation of Silver by Atomic Oxygen. ESA Journal. 1989, 13, 363-382.
[44] Wu, L.; Wang, W.; Zhang, W.; Su, H.; Liu, Q.; Gu, J.;Deng, T. & Zhang, D. Highly Sensitive, Reproducible and Uniform SERS Substrates with A High Density of Three-Dimensionally Distributed Hotspots: Gyroid-Structured Au Periodic Metallic Materials. Nature: NPG Asia Material. 2018, 10, e462.
[45] Sundararajan, P. R. Physical Aspects of Polymer Self-Assembly. New Jersey: John Wiley & Sons, Inc. 2017, 1st Edition.
[46] Mai, Yiyong and Eisenberg, Adi. Self-Assembly of Block Copolymers. Chem. Soc. Rev. 2012, 41, 5969-5985.
[47] Smart, T.; Lomas, H.; Massignani, M.; Floers-Merino, M. V.; Perez, L. R. & Battaglia, G. Block Copolymer Nanostructures. Nanotoday. 2008, 3, 3-4.
[48] Bates, F. S. and Fredrickson, G. H. Phys. Today, 1999, 52, 32–38.
[49] Wang, Yong and Li, Fengbin. An Emerging Pore-Making Strategy: Confined Swelling-Induced Pore Generation in Block Copolymer Materials. Adv. Mater. 2011, 23, 2134-2148.
[50] Chen, D.; Park, S.; Chen, J. T.; Redston, E. & Russell, T. P. A Simple Route for the Preparation of Mesoporous Nanostructures Using Block Copolymers. ACS Nano, 2009, 3, 9, 2827-2833
[51] Krishnamoorthy, S.; Pugin, R.; Brugger, J.; Heinzelmann, H. & Hinderling, C. Tuning the Dimensions and Periodicities of Nanostructures Starting from the Same Polystyrene-block-poly-(2vinylpyridine) Diblock Copolymer. Adv. Funct. Mater. 2006, 16, 1469-1475.
[52] Zhou, M.; Wu, Y.; Wu, B.; Yin, X.; Gao, N.;Li, F. & Li, G. Block Copolymers Templated Approach to Nanopatterned Metal-Organic Framework Films. Chemistry - An Asian Journal. 2017. 12, 16, 2044-2047
[53] Yang, J.; Tong, L.; Yang, Y.; Chen, X.; Huang, J.; Chen, R. & Wang, Y. Selective-Swelling-Induced Porous Block Copolymers and Their Robust TiO2 Replicas via Atomic Layer Deposition for Antireflective Applications. J. Mater. Chem. 2013, 1, 5133.
[54] Wang, Y.; He, C.; Xing, W.; Li, F.; Tong, L.; Chen, Z.; Liao X. & Steinhart, M. Nanoporous Metal Membranes with Bicontinuous Morphology from Recycable Block-Copolymer Templates. Adv. Mater. 2010, 22, 2068-2072.
[55] Sharma, S. K.; Verma, D. S.; Khan, L. U.; Kumar, S. & Khan, S. B. Handbook of Materials Characterization. Switzerland: Springer International Publishing, 2018.
[56] Leng, Yang. Material Characterization: Introduction to Microscopic and Spectroscopic Methods. Germany: Wiley-VCH Verlag GmbH & Co., 2013, 2nd Edition.
[57] Ford, Brian J., Bradbury, Savile and Joy, David C. Transmission electron Microscope. United States : Encyclopedia Britannica, Inc, 2008.
[58] University of Virginia, Department of pharmacology official website, 2019
[59] Schlücker, Sebastian. Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angew. Chem. Int. Ed. 2014, 53, 4756-4795.
[60] Boujday, S.; Chapelle, M. L.; Srajer, J. & Knoll, W. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing. Sensors. 2015, 15, 21239-21264.
[61] Majoube, M. and Henry, M. Fourier Transform Raman and Infrared and Surface-Enhanced Raman Spectra for Rhodamine 6G. Spectrochimica Acta. 1991, 47A(9-10), 1459-1466.
[62] Pal, Satyanarayan. Pyridine: A Useful Ligand in Transition Metal Complexes. India: Department of Chemistry, 2017.
[63] He, G.; Bennett, T. M.; Alauhdin, M.; Fay, M. W.; Liu, X.; Schwab, S. T.; Sun, C. & Howdle, S. A Facile Route to Bespoke Macro- and Mesoporous Block Copolymer Microparticles. Polym. Chem. 2018, 9, 3808-3819.
[64] Jiang, N.; Sen, M.; Endoh, M. K.; Koga, T.; Langhammer, E.; Bjöörn, P. & Tsige, M. Thermal Properties and Segmental Dynamics of Polymer Melt Chains Adsorbed on Solid Surfaces. Langmuir, 2018, 34, 4199-4209.
[65] Akcora, P.; Briber, R. M. & Kofinas, P. TEM Characterization of Diblock Copolymer Templated Iron Oxide Nanoparticles: Bulk Solution and Thin Film Surface Doping Approach. Polymer, 2006, 47, 2018-2022.
[66] Chai, J.; Wang, D.; Fan, X. & Buriak, J. M. Assembly of Aligned Linear Metallic Patterns on Silicon. Nature Nanotecnology, 2007, 2, 500-506.
[67] Toit, H. D.; Macdonald, T. J.; Huang, H.; Parkin, I. P. & Gavriilidis, A. Continuous Flow Synthesis of Citrate Capped Gold Nanoparticles Using UV Induced Nucleation. RSC Adv. 2017, 7, 9632-9638.
[68] Wei, Mingjie and Wang, Yong. Surface Attachment of Gold Nanoparticles Guided by Block Copolymer Micellars Films and Its Application in Silicon Etching. Materials. 2015, 8, 7, 3793-3805.
[69] Cooper, Rose M. Behaviour of Gold Nanoparticles in Physiological Environment and the Role of Agglomeration and Fractal Dimension. Thesis, 2011.
[70] Young, J. K.; Lewinski, N. A.; Langsner, R. J.; Kennedy, L. C.; Satyanarayan, A.; Nammalvar, V.; Lin, A. Y. & Drezek, R. A. Size-Controlled Synthesis of Monodispersed Gold Nanoparticles via Carbon Monoxide Gas Reduction. Nanoscale Research Letters, 6, 428.
[71] Tsai, H.; Hu, E.; Perng, K.; Chen, M.; Wu, J. C. & Chang, Y. S. Instability of Gold Oxide Au2O3. Surface Science, 2003, 537, L447-L450.
[72] Ono, Luis K. and Cuenyn, Beatriz Roldan. Formation and Thermal Stability of Au2O3 on Gold Nanoparticles: Size and Support Effects. J. Phys. Chem, 2008, 112, 4676-4686.
[73] Sun, Xuping and Luo, Yonglan. On the Preparation of Single-Crystalline Gold Microplates. Materials Letters, 2006, 60, 3145-3148.
[74] Shao, Y.; Jin, Y. and Dong, S. Synthesis of Gold Nanoplates by Aspartate Reduction of Gold Chloride. Chem. Commun. 2004, 1104-1105.
[75] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson . The Materials Project: A materials genome approach to accelerating materials innovation
APL Materials, 2013, 1(1), 011002.
[76] Xuemei, Hou and Hao, Ying. Fabrication of Polystyrene / Detonation Nanographite Composite Microspheres with the Core/Shell Structure via Pickering Emulsion Polymerization. Journal of Nanomaterials. 2013, 8.
[77] Olivante, Lawrence V. Materials Science and Research Trends. New York: Nova Science Publishers, Inc. 2008.
[78] Lu, Y. H.; Liou, J. Y.; Lin, C. F. & Sun, Y. S. Electrocatalytic activity of a nitrogen-enriched mesoporous carbon framework and its hybrids with metal nanoparticles fabricated through the pyrolysis of block copolymers. RSC Adv. 2015, 5, 105760-105773.
[79] Xia, Y.; Halas, N. J.; and Guest Editors. Shape-Controlled Synthesis and Surface Plasmonic Properties of Metallic Nanostructures. MRS Bulletin. 2005, 30.
[80] Newman, J. D. S.; and Blanchard, G. J. Formation of Gold Nanoparticles Using Amine Reducing Agents. Langmuir. 2006, 22, 5882-5887.
[81] Sun, K.; Qiu, J.; Liu, J. & Miao, Y. Preparation and Characterization of Gold Nanoparticles Using Ascorbic Acid as Reducing Agent in Reverse Micelles. J. Mater. Sci. 2009, 44, 754-758.
[82] Sigma Aldrich. 2019. Gold Nanoparticles: Properties and Applications. Retrieved on 2019-05-25 from https://www.sigmaaldrich.com/technical-documents/articles/materials-science/nanomaterials/gold-nanoparticles.html.
[83] Shi, Hongqing.; Asahi, Ryoji, and Stampfl, Catherine. Properties of the Gold Oxides Au2O3 and Au2O: First-Principle Investigation. Phys. Rev. B. 2007, 75, 205125.
[84] Lekesiz, T. O.; Kaleli, K.; Uyar, T.; Kayran, C. & Hecaloglu, J. Preparation and Characterization of Polystyrene-b-Poly(2-vinylpyridine) Coordinated to Metal or Metal Ion Nanoparticles. J. Anal. Appl. Pyro. 2014, 106, 81-85.
[85] Font, F. and Myers, T. G. Spherically Symmetric Nanoparticle Melting with A Variable Phase Change Temperature. J. Nanopart. Res. 2013, 15, 2086.
[86] Sun, Ya Sen; Lin, Chien-Fu; and Luo, Shih-Ting. Two-Dimensional Nitrogen-Enriched Carbon Nanosheets with Surface-Enhanced Raman Scattering. J. Phys. Chem. C. 2017, 121, 14795-14802.
[87] Smith, W. E and Rodger, C. Surface-Enhanced Raman Scattering (SERS), Applications. 1999, 3, 2329-2334.
[88] Ujihara, Masaki; Dang, Nhut Minh; and Imae, Toyoko. Surface-Enhanced Resonance Raman Scattering of Rhodamine 6G in Dispersions and on Films of Confeito-Like Au Nanoparticles. Sensors. 2017, 17, 11, 2563.
[89] Watanabe, H.; Hayazawa, N.; Inouye, Y. & Kawata, S. DFT Vibrational Calculations of Rhodamine 6G Adsorbed on Silver: Analysis of Tip-Enhanced Raman Spectroscopy. J. Phys. Chem. 2005, 109, 5012-5020.
[90] Zhang, Y. X.; Zheng, J.; Gao, G.; Kong, Y. F., Zhi, X.; Wang, K.; Zhang, X. Q. & Cui, D. X. Biosynthesis of Gold Nanoparticles using Chloroplasts. International Journal of Nanomedicine. 2011, 6, 2899-2906.
[91] Boerigter, C.; Campana, R.; Morabito, M. & Linic, S. Evidence and Implications of Direct Charge Excitation as the Dominant Mechanism in Plasmon-Mediated Photocatalysis. Nat. Comm. 2014, 7, 10545.
[92] Zhao, Y.; Liu, X.; Lei, D. Y. & Chai, Y. Effects of Surface Roughness of Ag Thin Films on Surface-Enhanced Raman Spectroscopy of Graphene: Spatial Nonlocality and Physisorption Strain. Nanoscale. 2014, 6, 1311-1317.
指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2019-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明