參考文獻 |
[1] Zhang, L.; Guan, C.; Wang, Y.; & Liao, J. Highly Effective and Uniform SERS Substrates Fabricated by Etching Multi-layered Gold Nanoparticle Arrays. Nanoscale. 2016, 8, 5928-5937.
[2] Liu, H.; Zhang, L.; Lang, X.; Yamaguchi, Y.; Iwasaki, H.; Inouye, Y.; Xue, Q.; & Chen, M. Single Molecule Detection from a Large-scale SERS-active Au79Ag21 Substrate. Scientific Reports. 2011, 1, 112.
[3] Yap, F.L.; Thoniyot, P.; Krishnan, S.; & Krishnamoorthy, S. Nanoparticle Cluster Arrays for High-Performance SERS through Directed Self-Assembly on Flat Substrates and on Optical Fibers. ACS Nano. 2012, 6(3), 2056-2070.
[4] Caceres, R. C.; Dawson, C.; Formanek, P.; Fischer, D.; Simon, F.; Janke, A.; Uhlmann, P. & Stamm, M. Polymers as Templates for Au and Au@Ag Bimetallic Nanorods: UV-Vis and Surface Enhanced Raman Spectroscopy. Chem. Mater. 2013, 25, 158-169
[5] Bhattacharjee, G.; Bhattacharya, M.; Roy, A.; Senapati, D. & Satpati, B. Core-Shell Gold@Silver Nanorods of Varying Length for High Surface-Enhanced Raman Scattering Enhancement. ACS Appl. Nano. Mater. 2018, 1, 10, 5589-5600.
[6] Banbury, C.; Rickard, J. J. S.; Mahajan, S. & Oppenheimer, P. G. Tunable Metamaterial-like Platforms for Surface Enhanced Raman Scattering via Three-Dimensional Block Copolymer Based Nanoarchitectures. ACS Appl. Mater. Interfaces. 2019. 11, 15, 14437-14444.
[7] Li, F.; Yao, X.; Wang, Z.; Xing, W.; Jin, W.; Huang, J. & Wang, Y. Highly Porous Metal Oxide Networks of Interconnected Nanotubes by Atomic Layer Deposition. Nano Lett. 2012, 12, 5033-5038
[8] Zheng, Y.; Wang, W.; Fu, Q.; Wu, M.; Shayan, K.; Wong, K. M.; Singh, S.; Schober, A.; Schaaf, P. & Lei, Y. Surface Enhanced Raman Scattering (SERS) Substrate Based on Large-Area Well-Defined Gold Nanoparticle Arrays with High SERS Uniformity and Stability. Chem. Plus Chem. 2014, 79, 11, 1622-1630
[9] Li, C.; Dag, Ö.; Dao, T. D.; Nagao, T.; Sakamoto, Y.; Kimura, T.,; Terasaki, O. & Yamauchi, Y. Electrochemical Synthesis of Mesoporous Gold Films toward Mesospace-Stimulated Optical Properties. Nat. Comm. 2015, 6, 6608.
[10] Cao, Wei. Gold Nanostructures with Superhydrophobic to Superhydrophilic Wetting Transition and Tunable SERS Applications Prepared by Galvanic Displacement. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 382, 022026
[11] Lu, Jennifer Q. and Yi, Sung Soo. Uniformly Sized Gold Nanoparticles Derived from PS-b-P2VP Block Copolymer Templates for the Controllable Synthesis of Si Nanowires. Langmuir. 2006, 22, 9.
[12] Chegel, V.; Rachkov, O.; Lopatynskyi, A.; Ishihara, S.; Yanchuk, I.; Nemoto, Y.; Hill, J. P. & Ariga, K. Gold Nanoparticles Aggregation: Drastic Effect of Cooperative Functionalities in a Single Molecular Conjugate. J. Phys. Chem. C. 2012, 116, 2683-2690.
[13] Ru, Eric Le and Etchegoin, Pablo. Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects. Amsterdam: Elsevier. 2009, 1st edition.
[14] Ma, C., Trujillo, Michael J. & Camden, J. P. Nanoporous Silver Film Fabricated by Oxygen Plasma: A Facile Approach for SERS Substrates. ACS Appl. Mater. Interfaces. 2016, 8, 23978-23984.
[15] Wang, X.; Wang, C.; Cheng, L.; Lee, S. T. & Liu, Z. Noble Metal Coated Single-Walled Carbon Nanotubes for Applications in Surface Enhanced Raman Scattering Imaging and Photothermal Therapy. J. Am. Chem. Soc. 2012, 134, 7414-7422
[16] Basu, Srismrita. Surface Enhanced Raman Scattering (SERS) Substrates and Probes. 2017. LSU Doctoral Dissertations. 4177.
[17] Murray, W. A.; Barnes, W. L.; Plasmonic Materials. Adv. Mater. 2007, 19, 3771-3782.
[18] Ujihara, M.; Dang, N. M. & Imae, T. Surface-Enhanced Resonance Raman Scattering of Rhodamine 6G in Dispersions and on Films of Confeito-Like Au Nanoparticles. Sensors. 2017, 17, 2563.
[19] Moskovits, M. Surface-Enhanced Raman Spectroscopy: A Brief Retrospective. J. Raman Spectrosc. 2005, 36, 485-496.
[20] Wang, Y.; Becker, M.; Wang, L.; Liu, J.; Scholz, R.; Peng, J.; Gösele, U.; Christianse, S.; Kim, D.H. & Steinhart, M. Nanostructrued Gold Films for SERS by Block Copolymer-Templated Galvanic Displacement Reactions. Nano Lett. 2009, 9, 6.
[21] Hsueh, H. Y.; Chen, H. Y.; Hung, Y. C.; Ling, Y. C.; Gwo, S. & Ho, R. M. Well-Defined Multibranched Gold with Surface Plasmon Resonance in Near-Infrared Region from Seeding Growth Approach Using Gyroid Block Copolymer Template. Adv. Mater. 2013, 25, 1780-1786.
[22] Zhang, Jintao and Li, Chang Ming. Nanoporous Metals : Fabrication Strategies and Advanced Electrochemical Applications in Catalysis, Sensing, and Energy Systems. Chem. Soc. Rev. 2012, 41, 7016-7031.
[23] Bhattarai, J. K.; Neupane, D.; Nepal, B.; Mikhaylov, V.; Demchenko, A.V. and Stine, K. J. Structure and Applications of Gold in Nanoporous Form, inside Noble and Precious Metals – Properties, Nanoscale Effects and Applications. London, UK: Intech Open, 2018.
[24] Ron, R.; Haleva, E. & Salomon, A. Nanoporous Metallic Networks: Fabrication, Optical Properties, and Applications. Adv. Mater. 2018, 1706755.
[25] Ding, Y.; Kim, Y. J. & Erlebacher, J. Nanoporous Gold Leaf: “Ancient Technology”/Advanced Material. Adv. Mater. 2004, 16, 21.
[26] Liu, W.; Herrmann, A. K.; Bigall, N. C.; Rodriguez, P.; Wen, D.; Oezaslan, M.; Schmidt, T. J.; Gaponik, N. & Eychmüller, A. Noble Metal Aerogels-Synthesis, Characterization, and Application as Electrocatalysts. Acc. Chem. Res. 2015, 48, 154-162.
[27] Ron, R.; Gachet, D.; Rechav, K. & Salomon, A. Direct Fabrication of 3D Metallic Networks and Their Performance. Adv. Mater. 2017, 29, 1604018.
[28] De Caro, Cosimo A. UV/VIS Spectrophotometry – Fundamentals and Applications. Metler Toledo. 2015.
[29] Tesler, A. B.; Chuntonov, L.; Karakouz, T.; Bendikov, T. A.; Haran, G.; Vaskevich, A. & Rubinstein, I. Tunable Localized Plasmon Transducers Prepared by Thermal Dewetting of Percolated Evaporated Gold Films. J. Phys. Chem. C. 2011, 115, 24642-24652.
[30] Zhao, F.; Zeng, J.; Arnob, M. M. P.; Sun, P.; Qi, J.; Motwani, P.; Gheewala, M.; Li, C. H.; Paterson, A.; Strych, U.; Raja, B.; Willson, R. C.; Wolfe, J. C.; Lee, R. & Shih, W. C. Monolithic NPG Nanoparticles with Large Surface Area, Tunable Plasmonics, and High-Density Internal Hot-spots. Nanoscale. 2014, 6, 8199-8207.
[31] Yin, Z.; Wang, Y.; Song, C.; Zheng, L.; Ma, N.; Liu, X.; Li, S.; Lin, L.; Li, M.; Xu, Y.; Li, W.; Hu, G.; Fang, Z. & Ma, D. Hybrid Au-Ag Nanostructures for Enhanced Plasmon-Driven Catalytic Selective Hydrogenation through Visible Light Irradiation and Surface-Enhanced Raman Scattering. J. Am. Chem. Soc. 2018, 140, 864-867.
[32] Wang, C.; Zhao, X. P.; Xu, Q. Y.; Younis, M. R.; Liu, W. Y.; Xia, X. H. Importance of Hot Spots in Gold Nanostructures on Direct Plamon Enhanced Electrochemistry. ACS Appl. Nano. Mat. 2018.1, 10, 5805-5811.
[33] McCreery, Richard L. Raman Spectroscopy for Chemical Analysis. Wiley-Interscience
[34] Israelsen, Nathan. Surface Enhanced Raman Spectroscopy-Based Biomarker Detection for B-Cell Malignancies. 2015. All Graduate Theses and Dissertations. 4605.
[35] Duyne, R. P. Van.; Jeanmaire, D. L.; Shriver, D. F.; Mode-locked laser Raman Spectroscopy – A new Technique for The Rejection of Interfering Background Luminescence Signals. Anal. Chem. 1974, 46, 213-222.
[36] Miles, R. B.; Lempert, W. R.; N. Forkey J. Laser Rayleigh Scattering. Meas. Sci. Technol. 2001, 12, R33-R51.
[37] Driskell, Jeremy Daniel. Surface-Enhanced Raman Scattering (SERS) for Detection in Immunoassays: Applications, Fundamentals, and Optimization. Retrospective Theses and Dissertations. 2006. 1932.
[38] Ameer, F. S.; Pittman, C. U. Jr. & Zhang, D. Quantification of Resonance Raman Enhancement Factors for Rhodamine 6G (R6G) in Water and on Gold and Silver Nanoparticles: Implications for Single-Molecule R6G SERS. J. Phys. Chem. C. 2013, 117, 27096-27104.
[39] Huang, J.; He, Z.; He, X.; Liu, Y.; Wang, T.; Chen, G.; Tang, C.; Jia, R.; Liu, L.; Zhang, L.; Wang, J.; Ai, X.; Sun, S.; Zu, X. & Du, K. Island-like Nanoporous Gold: Smaller Island Generates Stronger Surface-Enhanced Raman Scattering. ACS Appl. Mater. Interfaces. 2017, 9, 28902-28910.
[40] Sevenler, D.; Ünlü, L. & Ünlü M. S. Nanoparticle Biosensing with Interderometric Reftectance Imaging inside Nanobiosensor and Nanobioanalyses. Japan : Springer, 2015.
[41] He, Lili. Application of Surface Enhanced Raman Spectroscopy to Food Safety Issues. Dissertations. 2009.
[42] Willets, K. a. and Van Duyne, R.P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual. Rev. Phy. Chem. 2007, 58, 267-297.
[43] De Rooij, A. The Oxidation of Silver by Atomic Oxygen. ESA Journal. 1989, 13, 363-382.
[44] Wu, L.; Wang, W.; Zhang, W.; Su, H.; Liu, Q.; Gu, J.;Deng, T. & Zhang, D. Highly Sensitive, Reproducible and Uniform SERS Substrates with A High Density of Three-Dimensionally Distributed Hotspots: Gyroid-Structured Au Periodic Metallic Materials. Nature: NPG Asia Material. 2018, 10, e462.
[45] Sundararajan, P. R. Physical Aspects of Polymer Self-Assembly. New Jersey: John Wiley & Sons, Inc. 2017, 1st Edition.
[46] Mai, Yiyong and Eisenberg, Adi. Self-Assembly of Block Copolymers. Chem. Soc. Rev. 2012, 41, 5969-5985.
[47] Smart, T.; Lomas, H.; Massignani, M.; Floers-Merino, M. V.; Perez, L. R. & Battaglia, G. Block Copolymer Nanostructures. Nanotoday. 2008, 3, 3-4.
[48] Bates, F. S. and Fredrickson, G. H. Phys. Today, 1999, 52, 32–38.
[49] Wang, Yong and Li, Fengbin. An Emerging Pore-Making Strategy: Confined Swelling-Induced Pore Generation in Block Copolymer Materials. Adv. Mater. 2011, 23, 2134-2148.
[50] Chen, D.; Park, S.; Chen, J. T.; Redston, E. & Russell, T. P. A Simple Route for the Preparation of Mesoporous Nanostructures Using Block Copolymers. ACS Nano, 2009, 3, 9, 2827-2833
[51] Krishnamoorthy, S.; Pugin, R.; Brugger, J.; Heinzelmann, H. & Hinderling, C. Tuning the Dimensions and Periodicities of Nanostructures Starting from the Same Polystyrene-block-poly-(2vinylpyridine) Diblock Copolymer. Adv. Funct. Mater. 2006, 16, 1469-1475.
[52] Zhou, M.; Wu, Y.; Wu, B.; Yin, X.; Gao, N.;Li, F. & Li, G. Block Copolymers Templated Approach to Nanopatterned Metal-Organic Framework Films. Chemistry - An Asian Journal. 2017. 12, 16, 2044-2047
[53] Yang, J.; Tong, L.; Yang, Y.; Chen, X.; Huang, J.; Chen, R. & Wang, Y. Selective-Swelling-Induced Porous Block Copolymers and Their Robust TiO2 Replicas via Atomic Layer Deposition for Antireflective Applications. J. Mater. Chem. 2013, 1, 5133.
[54] Wang, Y.; He, C.; Xing, W.; Li, F.; Tong, L.; Chen, Z.; Liao X. & Steinhart, M. Nanoporous Metal Membranes with Bicontinuous Morphology from Recycable Block-Copolymer Templates. Adv. Mater. 2010, 22, 2068-2072.
[55] Sharma, S. K.; Verma, D. S.; Khan, L. U.; Kumar, S. & Khan, S. B. Handbook of Materials Characterization. Switzerland: Springer International Publishing, 2018.
[56] Leng, Yang. Material Characterization: Introduction to Microscopic and Spectroscopic Methods. Germany: Wiley-VCH Verlag GmbH & Co., 2013, 2nd Edition.
[57] Ford, Brian J., Bradbury, Savile and Joy, David C. Transmission electron Microscope. United States : Encyclopedia Britannica, Inc, 2008.
[58] University of Virginia, Department of pharmacology official website, 2019
[59] Schlücker, Sebastian. Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angew. Chem. Int. Ed. 2014, 53, 4756-4795.
[60] Boujday, S.; Chapelle, M. L.; Srajer, J. & Knoll, W. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing. Sensors. 2015, 15, 21239-21264.
[61] Majoube, M. and Henry, M. Fourier Transform Raman and Infrared and Surface-Enhanced Raman Spectra for Rhodamine 6G. Spectrochimica Acta. 1991, 47A(9-10), 1459-1466.
[62] Pal, Satyanarayan. Pyridine: A Useful Ligand in Transition Metal Complexes. India: Department of Chemistry, 2017.
[63] He, G.; Bennett, T. M.; Alauhdin, M.; Fay, M. W.; Liu, X.; Schwab, S. T.; Sun, C. & Howdle, S. A Facile Route to Bespoke Macro- and Mesoporous Block Copolymer Microparticles. Polym. Chem. 2018, 9, 3808-3819.
[64] Jiang, N.; Sen, M.; Endoh, M. K.; Koga, T.; Langhammer, E.; Bjöörn, P. & Tsige, M. Thermal Properties and Segmental Dynamics of Polymer Melt Chains Adsorbed on Solid Surfaces. Langmuir, 2018, 34, 4199-4209.
[65] Akcora, P.; Briber, R. M. & Kofinas, P. TEM Characterization of Diblock Copolymer Templated Iron Oxide Nanoparticles: Bulk Solution and Thin Film Surface Doping Approach. Polymer, 2006, 47, 2018-2022.
[66] Chai, J.; Wang, D.; Fan, X. & Buriak, J. M. Assembly of Aligned Linear Metallic Patterns on Silicon. Nature Nanotecnology, 2007, 2, 500-506.
[67] Toit, H. D.; Macdonald, T. J.; Huang, H.; Parkin, I. P. & Gavriilidis, A. Continuous Flow Synthesis of Citrate Capped Gold Nanoparticles Using UV Induced Nucleation. RSC Adv. 2017, 7, 9632-9638.
[68] Wei, Mingjie and Wang, Yong. Surface Attachment of Gold Nanoparticles Guided by Block Copolymer Micellars Films and Its Application in Silicon Etching. Materials. 2015, 8, 7, 3793-3805.
[69] Cooper, Rose M. Behaviour of Gold Nanoparticles in Physiological Environment and the Role of Agglomeration and Fractal Dimension. Thesis, 2011.
[70] Young, J. K.; Lewinski, N. A.; Langsner, R. J.; Kennedy, L. C.; Satyanarayan, A.; Nammalvar, V.; Lin, A. Y. & Drezek, R. A. Size-Controlled Synthesis of Monodispersed Gold Nanoparticles via Carbon Monoxide Gas Reduction. Nanoscale Research Letters, 6, 428.
[71] Tsai, H.; Hu, E.; Perng, K.; Chen, M.; Wu, J. C. & Chang, Y. S. Instability of Gold Oxide Au2O3. Surface Science, 2003, 537, L447-L450.
[72] Ono, Luis K. and Cuenyn, Beatriz Roldan. Formation and Thermal Stability of Au2O3 on Gold Nanoparticles: Size and Support Effects. J. Phys. Chem, 2008, 112, 4676-4686.
[73] Sun, Xuping and Luo, Yonglan. On the Preparation of Single-Crystalline Gold Microplates. Materials Letters, 2006, 60, 3145-3148.
[74] Shao, Y.; Jin, Y. and Dong, S. Synthesis of Gold Nanoplates by Aspartate Reduction of Gold Chloride. Chem. Commun. 2004, 1104-1105.
[75] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson . The Materials Project: A materials genome approach to accelerating materials innovation
APL Materials, 2013, 1(1), 011002.
[76] Xuemei, Hou and Hao, Ying. Fabrication of Polystyrene / Detonation Nanographite Composite Microspheres with the Core/Shell Structure via Pickering Emulsion Polymerization. Journal of Nanomaterials. 2013, 8.
[77] Olivante, Lawrence V. Materials Science and Research Trends. New York: Nova Science Publishers, Inc. 2008.
[78] Lu, Y. H.; Liou, J. Y.; Lin, C. F. & Sun, Y. S. Electrocatalytic activity of a nitrogen-enriched mesoporous carbon framework and its hybrids with metal nanoparticles fabricated through the pyrolysis of block copolymers. RSC Adv. 2015, 5, 105760-105773.
[79] Xia, Y.; Halas, N. J.; and Guest Editors. Shape-Controlled Synthesis and Surface Plasmonic Properties of Metallic Nanostructures. MRS Bulletin. 2005, 30.
[80] Newman, J. D. S.; and Blanchard, G. J. Formation of Gold Nanoparticles Using Amine Reducing Agents. Langmuir. 2006, 22, 5882-5887.
[81] Sun, K.; Qiu, J.; Liu, J. & Miao, Y. Preparation and Characterization of Gold Nanoparticles Using Ascorbic Acid as Reducing Agent in Reverse Micelles. J. Mater. Sci. 2009, 44, 754-758.
[82] Sigma Aldrich. 2019. Gold Nanoparticles: Properties and Applications. Retrieved on 2019-05-25 from https://www.sigmaaldrich.com/technical-documents/articles/materials-science/nanomaterials/gold-nanoparticles.html.
[83] Shi, Hongqing.; Asahi, Ryoji, and Stampfl, Catherine. Properties of the Gold Oxides Au2O3 and Au2O: First-Principle Investigation. Phys. Rev. B. 2007, 75, 205125.
[84] Lekesiz, T. O.; Kaleli, K.; Uyar, T.; Kayran, C. & Hecaloglu, J. Preparation and Characterization of Polystyrene-b-Poly(2-vinylpyridine) Coordinated to Metal or Metal Ion Nanoparticles. J. Anal. Appl. Pyro. 2014, 106, 81-85.
[85] Font, F. and Myers, T. G. Spherically Symmetric Nanoparticle Melting with A Variable Phase Change Temperature. J. Nanopart. Res. 2013, 15, 2086.
[86] Sun, Ya Sen; Lin, Chien-Fu; and Luo, Shih-Ting. Two-Dimensional Nitrogen-Enriched Carbon Nanosheets with Surface-Enhanced Raman Scattering. J. Phys. Chem. C. 2017, 121, 14795-14802.
[87] Smith, W. E and Rodger, C. Surface-Enhanced Raman Scattering (SERS), Applications. 1999, 3, 2329-2334.
[88] Ujihara, Masaki; Dang, Nhut Minh; and Imae, Toyoko. Surface-Enhanced Resonance Raman Scattering of Rhodamine 6G in Dispersions and on Films of Confeito-Like Au Nanoparticles. Sensors. 2017, 17, 11, 2563.
[89] Watanabe, H.; Hayazawa, N.; Inouye, Y. & Kawata, S. DFT Vibrational Calculations of Rhodamine 6G Adsorbed on Silver: Analysis of Tip-Enhanced Raman Spectroscopy. J. Phys. Chem. 2005, 109, 5012-5020.
[90] Zhang, Y. X.; Zheng, J.; Gao, G.; Kong, Y. F., Zhi, X.; Wang, K.; Zhang, X. Q. & Cui, D. X. Biosynthesis of Gold Nanoparticles using Chloroplasts. International Journal of Nanomedicine. 2011, 6, 2899-2906.
[91] Boerigter, C.; Campana, R.; Morabito, M. & Linic, S. Evidence and Implications of Direct Charge Excitation as the Dominant Mechanism in Plasmon-Mediated Photocatalysis. Nat. Comm. 2014, 7, 10545.
[92] Zhao, Y.; Liu, X.; Lei, D. Y. & Chai, Y. Effects of Surface Roughness of Ag Thin Films on Surface-Enhanced Raman Spectroscopy of Graphene: Spatial Nonlocality and Physisorption Strain. Nanoscale. 2014, 6, 1311-1317.
|